ﻻ يوجد ملخص باللغة العربية
The time dependent quantum Monte Carlo method for fermions is introduced and applied for calculation of entanglement of electrons in one-dimensional quantum dots with several spin-polarized and spin-compensated electron configurations. The rich statistics of wave functions provided by the method allows one to build reduced density matrices for each electron and to quantify the spatial entanglement using measures such as quantum entropy by treating the electrons as identical or distinguishable particles. Our results indicate that the spatial entanglement in parallel-spin configurations is rather small and it is determined mostly by the quantum nonlocality introduced by the ground state. By contrast, in the spin-compensated case the outermost opposite-spin electrons interact like bosons which prevails their entanglement, while the inner shell electrons remain largely at their Hartree-Fock geometry. Our findings are in a close correspondence with the numerically exact results, wherever such comparison is possible.
For indistinguishable itinerant particles subject to a superselection rule fixing their total number, a portion of the entanglement entropy under a spatial bipartition of the ground state is due to particle fluctuations between subsystems and thus is
We investigate the scaling of the R{e}nyi entanglement entropies for a particle bipartition of interacting spinless fermions in one spatial dimension. In the Tomonaga-Luttinger liquid regime, we calculate the second R{e}nyi entanglement entropy and s
We show that spatial entanglement of two twin images obtained by parametric down-conversion is complete, i.e. concerns both amplitude and phase. This is realised through a homodyne detection of these images which allows for measurement of the field q
The time evolution of one- and two-dimensional discrete-time quantum walk with increase in disorder is studied. We use spatial, temporal and spatio-temporal broken periodicity of the unitary evolution as disorder to mimic the effect of disordered/ran
One-dimensional atomic mixtures of fermions can effectively realize spin chains and thus constitute a clean and controllable platform to study quantum magnetism. Such strongly correlated quantum systems are also of sustained interest to quantum simul