ﻻ يوجد ملخص باللغة العربية
Power grid parameter estimation involves the estimation of unknown parameters, such as inertia and damping coefficients, using observed dynamics. In this work, we present a comparison of data-driven algorithms for the power grid parameter estimation problem. First, we propose a new algorithm to solve the parameter estimation problem based on the Sparse Identification of Nonlinear Dynamics (SINDy) approach, which uses linear regression to infer the parameters that best describe the observed data. We then compare its performance against two benchmark algorithms, namely, the unscented Kalman filter (UKF) approach and the physics-informed neural networks (PINN) approach. We perform extensive simulations on IEEE bus systems to examine the performance of the aforementioned algorithms. Our results show that the SINDy algorithm outperforms the PINN and UKF algorithms in being able to accurately estimate the power grid parameters over a wide range of system parameters (including high and low inertia systems). Moreover, it is extremely efficient computationally and so takes significantly less time than the PINN algorithm, thus making it suitable for real-time parameter estimation.
The integration of renewables into electrical grids calls for optimization-based control schemes requiring reliable grid models. Classically, parameter estimation and optimization-based control is often decoupled, which leads to high system operation
A significant amount of converter-based generation is being integrated into the bulk electric power grid to fulfill the future electric demand through renewable energy sources, such as wind and photovoltaic. The dynamics of converter systems in the o
In this paper, we propose a data-driven energy storage system (ESS)-based method to enhance the online small-signal stability monitoring of power networks with high penetration of intermittent wind power. To accurately estimate inter-area modes that
The grid-forming converter is an important unit in the future power system with more inverter-interfaced generators. However, improving its performance is still a key challenge. This paper proposes a generalized architecture of the grid-forming conve
The rapid development of renewable energy has increased the peak to valley difference of the netload, making the netload following being a new challenge to the power system. Electric boiler with thermal storage (EBTS) occupies a non-negligible part o