ترغب بنشر مسار تعليمي؟ اضغط هنا

Bag of Tricks for Neural Architecture Search

112   0   0.0 ( 0 )
 نشر من قبل Thomas Elsken
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While neural architecture search methods have been successful in previous years and led to new state-of-the-art performance on various problems, they have also been criticized for being unstable, being highly sensitive with respect to their hyperparameters, and often not performing better than random search. To shed some light on this issue, we discuss some practical considerations that help improve the stability, efficiency and overall performance.



قيم البحث

اقرأ أيضاً

Neural architecture search (NAS) and hyperparameter optimization (HPO) make deep learning accessible to non-experts by automatically finding the architecture of the deep neural network to use and tuning the hyperparameters of the used training pipeli ne. While both NAS and HPO have been studied extensively in recent years, NAS methods typically assume fixed hyperparameters and vice versa - there exists little work on joint NAS + HPO. Furthermore, NAS has recently often been framed as a multi-objective optimization problem, in order to take, e.g., resource requirements into account. In this paper, we propose a set of methods that extend current approaches to jointly optimize neural architectures and hyperparameters with respect to multiple objectives. We hope that these methods will serve as simple baselines for future research on multi-objective joint NAS + HPO. To facilitate this, all our code is available at https://github.com/automl/multi-obj-baselines.
Adversarial training (AT) is one of the most effective strategies for promoting model robustness. However, recent benchmarks show that most of the proposed improvements on AT are less effective than simply early stopping the training procedure. This counter-intuitive fact motivates us to investigate the implementation details of tens of AT methods. Surprisingly, we find that the basic settings (e.g., weight decay, training schedule, etc.) used in these methods are highly inconsistent. In this work, we provide comprehensive evaluations on CIFAR-10, focusing on the effects of mostly overlooked training tricks and hyperparameters for adversarially trained models. Our empirical observations suggest that adversarial robustness is much more sensitive to some basic training settings than we thought. For example, a slightly different value of weight decay can reduce the model robust accuracy by more than 7%, which is probable to override the potential promotion induced by the proposed methods. We conclude a baseline training setting and re-implement previous defenses to achieve new state-of-the-art results. These facts also appeal to more concerns on the overlooked confounders when benchmarking defenses.
Training deep graph neural networks (GNNs) is notoriously hard. Besides the standard plights in training deep architectures such as vanishing gradients and overfitting, the training of deep GNNs also uniquely suffers from over-smoothing, information squashing, and so on, which limits their potential power on large-scale graphs. Although numerous efforts are proposed to address these limitations, such as various forms of skip connections, graph normalization, and random dropping, it is difficult to disentangle the advantages brought by a deep GNN architecture from those tricks necessary to train such an architecture. Moreover, the lack of a standardized benchmark with fair and consistent experimental settings poses an almost insurmountable obstacle to gauging the effectiveness of new mechanisms. In view of those, we present the first fair and reproducible benchmark dedicated to assessing the tricks of training deep GNNs. We categorize existing approaches, investigate their hyperparameter sensitivity, and unify the basic configuration. Comprehensive evaluations are then conducted on tens of representative graph datasets including the recent large-scale Open Graph Benchmark (OGB), with diverse deep GNN backbones. Based on synergistic studies, we discover the combo of superior training tricks, that lead us to attain the new state-of-the-art results for deep GCNs, across multiple representative graph datasets. We demonstrate that an organic combo of initial connection, identity mapping, group and batch normalization has the most ideal performance on large datasets. Experiments also reveal a number of surprises when combining or scaling up some of the tricks. All codes are available at https://github.com/VITA-Group/Deep_GCN_Benchmarking.
We propose Stochastic Neural Architecture Search (SNAS), an economical end-to-end solution to Neural Architecture Search (NAS) that trains neural operation parameters and architecture distribution parameters in same round of back-propagation, while m aintaining the completeness and differentiability of the NAS pipeline. In this work, NAS is reformulated as an optimization problem on parameters of a joint distribution for the search space in a cell. To leverage the gradient information in generic differentiable loss for architecture search, a novel search gradient is proposed. We prove that this search gradient optimizes the same objective as reinforcement-learning-based NAS, but assigns credits to structural decisions more efficiently. This credit assignment is further augmented with locally decomposable reward to enforce a resource-efficient constraint. In experiments on CIFAR-10, SNAS takes less epochs to find a cell architecture with state-of-the-art accuracy than non-differentiable evolution-based and reinforcement-learning-based NAS, which is also transferable to ImageNet. It is also shown that child networks of SNAS can maintain the validation accuracy in searching, with which attention-based NAS requires parameter retraining to compete, exhibiting potentials to stride towards efficient NAS on big datasets. We have released our implementation at https://github.com/SNAS-Series/SNAS-Series.
156 - Ye Lin , Yanyang Li , Tong Xiao 2021
Improving Transformer efficiency has become increasingly attractive recently. A wide range of methods has been proposed, e.g., pruning, quantization, new architectures and etc. But these methods are either sophisticated in implementation or dependent on hardware. In this paper, we show that the efficiency of Transformer can be improved by combining some simple and hardware-agnostic methods, including tuning hyper-parameters, better design choices and training strategies. On the WMT news translation tasks, we improve the inference efficiency of a strong Transformer system by 3.80X on CPU and 2.52X on GPU. The code is publicly available at https://github.com/Lollipop321/mini-decoder-network.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا