ﻻ يوجد ملخص باللغة العربية
This paper mainly studies the rule acquisition and attribute reduction for formal decision context based on two new kinds of decision rules, namely I-decision rules and II-decision rules. The premises of these rules are object-oriented concepts, and the conclusions are formal concept and property-oriented concept respectively. The rule acquisition algorithms for I-decision rules and II-decision rules are presented. Some comparative analysis of these algorithms with the existing algorithms are examined which shows that the algorithms presented in this study behave well. The attribute reduction approaches to preserve I-decision rules and II-decision rules are presented by using discernibility matrix.
The recent years have witnessed the rise of accurate but obscure decision systems which hide the logic of their internal decision processes to the users. The lack of explanations for the decisions of black box systems is a key ethical issue, and a li
Considering the high heterogeneity of the ontologies pub-lished on the web, ontology matching is a crucial issue whose aim is to establish links between an entity of a source ontology and one or several entities from a target ontology. Perfectible si
In this chapter, we present and discuss a new generalized proportional conflict redistribution rule. The Dezert-Smarandache extension of the Demster-Shafer theory has relaunched the studies on the combination rules especially for the management of th
Detection rules have traditionally been designed for rational agents that minimize the Bayes risk (average decision cost). With the advent of crowd-sensing systems, there is a need to redesign binary hypothesis testing rules for behavioral agents, wh
This paper proposes a novel intrusion detection system (IDS) that combines different classifier approaches which are based on decision tree and rules-based concepts, namely, REP Tree, JRip algorithm and Forest PA. Specifically, the first and second m