ترغب بنشر مسار تعليمي؟ اضغط هنا

Learn to Learn Metric Space for Few-Shot Segmentation of 3D Shapes

110   0   0.0 ( 0 )
 نشر من قبل Yi Fang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent research has seen numerous supervised learning-based methods for 3D shape segmentation and remarkable performance has been achieved on various benchmark datasets. These supervised methods require a large amount of annotated data to train deep neural networks to ensure the generalization ability on the unseen test set. In this paper, we introduce a meta-learning-based method for few-shot 3D shape segmentation where only a few labeled samples are provided for the unseen classes. To achieve this, we treat the shape segmentation as a point labeling problem in the metric space. Specifically, we first design a meta-metric learner to transform input shapes into embedding space and our model learns to learn a proper metric space for each object class based on point embeddings. Then, for each class, we design a metric learner to extract part-specific prototype representations from a few support shapes and our model performs per-point segmentation over the query shapes by matching each point to its nearest prototype in the learned metric space. A metric-based loss function is used to dynamically modify distances between point embeddings thus maximizes in-part similarity while minimizing inter-part similarity. A dual segmentation branch is adopted to make full use of the support information and implicitly encourages consistency between the support and query prototypes. We demonstrate the superior performance of our proposed on the ShapeNet part dataset under the few-shot scenario, compared with well-established baseline and state-of-the-art semi-supervised methods.

قيم البحث

اقرأ أيضاً

Meta-learning has been proved to be an effective framework to address few-shot learning problems. The key challenge is how to minimize the generalization error of base learner across tasks. In this paper, we explore the concept hierarchy knowledge by leveraging concept graph, and take the concept graph as explicit meta-knowledge for the base learner, instead of learning implicit meta-knowledge, so as to boost the classification performance of meta-learning on weakly-supervised few-shot learning problems. To this end, we propose a novel meta-learning framework, called MetaConcept, which learns to abstract concepts via the concept graph. Specifically, we firstly propose a novel regularization with multi-level conceptual abstraction to constrain a meta-learner to learn to abstract concepts via the concept graph (i.e. identifying the concepts from low to high levels). Then, we propose a meta concept inference network as the meta-learner for the base learner, aiming to quickly adapt to a novel task by the joint inference of the abstract concepts and a few annotated samples. We have conducted extensive experiments on two weakly-supervised few-shot learning benchmarks, namely, WS-ImageNet-Pure and WS-ImageNet-Mix. Our experimental results show that 1) the proposed MetaConcept outperforms state-of-the-art methods with an improvement of 2% to 6% in classification accuracy; 2) the proposed MetaConcept can be able to yield a good performance though merely training with weakly-labeled data sets.
This paper shows that when applying machine learning to digital zoom for photography, it is beneficial to use real, RAW sensor data for training. Existing learning-based super-resolution methods do not use real sensor data, instead operating on RGB i mages. In practice, these approaches result in loss of detail and accuracy in their digitally zoomed output when zooming in on distant image regions. We also show that synthesizing sensor data by resampling high-resolution RGB images is an oversimplified approximation of real sensor data and noise, resulting in worse image quality. The key barrier to using real sensor data for training is that ground truth high-resolution imagery is missing. We show how to obtain the ground-truth data with optically zoomed images and contribute a dataset, SR-RAW, for real-world computational zoom. We use SR-RAW to train a deep network with a novel contextual bilateral loss (CoBi) that delivers critical robustness to mild misalignment in input-output image pairs. The trained network achieves state-of-the-art performance in 4X and 8X computational zoom.
Attribute guided face image synthesis aims to manipulate attributes on a face image. Most existing methods for image-to-image translation can either perform a fixed translation between any two image domains using a single attribute or require trainin g data with the attributes of interest for each subject. Therefore, these methods could only train one specific model for each pair of image domains, which limits their ability in dealing with more than two domains. Another disadvantage of these methods is that they often suffer from the common problem of mode collapse that degrades the quality of the generated images. To overcome these shortcomings, we propose attribute guided face image generation method using a single model, which is capable to synthesize multiple photo-realistic face images conditioned on the attributes of interest. In addition, we adopt the proposed model to increase the realism of the simulated face images while preserving the face characteristics. Compared to existing models, synthetic face images generated by our method present a good photorealistic quality on several face datasets. Finally, we demonstrate that generated facial images can be used for synthetic data augmentation, and improve the performance of the classifier used for facial expression recognition.
Recent studies on deep-learning-based small defection segmentation approaches are trained in specific settings and tend to be limited by fixed context. Throughout the training, the network inevitably learns the representation of the background of the training data before figuring out the defection. They underperform in the inference stage once the context changed and can only be solved by training in every new setting. This eventually leads to the limitation in practical robotic applications where contexts keep varying. To cope with this, instead of training a network context by context and hoping it to generalize, why not stop misleading it with any limited context and start training it with pure simulation? In this paper, we propose the network SSDS that learns a way of distinguishing small defections between two images regardless of the context, so that the network can be trained once for all. A small defection detection layer utilizing the pose sensitivity of phase correlation between images is introduced and is followed by an outlier masking layer. The network is trained on randomly generated simulated data with simple shapes and is generalized across the real world. Finally, SSDS is validated on real-world collected data and demonstrates the ability that even when trained in cheap simulation, SSDS can still find small defections in the real world showing the effectiveness and its potential for practical applications.
105 - Lingjing Wang , Yu Hao , Xiang Li 2020
Deep learning-based point cloud registration models are often generalized from extensive training over a large volume of data to learn the ability to predict the desired geometric transformation to register 3D point clouds. In this paper, we propose a meta-learning based 3D registration model, named 3D Meta-Registration, that is capable of rapidly adapting and well generalizing to new 3D registration tasks for unseen 3D point clouds. Our 3D Meta-Registration gains a competitive advantage by training over a variety of 3D registration tasks, which leads to an optimized model for the best performance on the distribution of registration tasks including potentially unseen tasks. Specifically, the proposed 3D Meta-Registration model consists of two modules: 3D registration learner and 3D registration meta-learner. During the training, the 3D registration learner is trained to complete a specific registration task aiming to determine the desired geometric transformation that aligns the source point cloud with the target one. In the meantime, the 3D registration meta-learner is trained to provide the optimal parameters to update the 3D registration learner based on the learned task distribution. After training, the 3D registration meta-learner, which is learned with the optimized coverage of distribution of 3D registration tasks, is able to dynamically update 3D registration learners with desired parameters to rapidly adapt to new registration tasks. We tested our model on synthesized dataset ModelNet and FlyingThings3D, as well as real-world dataset KITTI. Experimental results demonstrate that 3D Meta-Registration achieves superior performance over other previous techniques (e.g. FlowNet3D).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا