ترغب بنشر مسار تعليمي؟ اضغط هنا

Learn to synthesize and synthesize to learn

315   0   0.0 ( 0 )
 نشر من قبل Behzad Bozorgtabar
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Attribute guided face image synthesis aims to manipulate attributes on a face image. Most existing methods for image-to-image translation can either perform a fixed translation between any two image domains using a single attribute or require training data with the attributes of interest for each subject. Therefore, these methods could only train one specific model for each pair of image domains, which limits their ability in dealing with more than two domains. Another disadvantage of these methods is that they often suffer from the common problem of mode collapse that degrades the quality of the generated images. To overcome these shortcomings, we propose attribute guided face image generation method using a single model, which is capable to synthesize multiple photo-realistic face images conditioned on the attributes of interest. In addition, we adopt the proposed model to increase the realism of the simulated face images while preserving the face characteristics. Compared to existing models, synthetic face images generated by our method present a good photorealistic quality on several face datasets. Finally, we demonstrate that generated facial images can be used for synthetic data augmentation, and improve the performance of the classifier used for facial expression recognition.



قيم البحث

اقرأ أيضاً

128 - Wu Shi , Tak-Wai Hui , Ziwei Liu 2019
Existing unconditional generative models mainly focus on modeling general objects, such as faces and indoor scenes. Fashion textures, another important type of visual elements around us, have not been extensively studied. In this work, we propose an effective generative model for fashion textures and also comprehensively investigate the key components involved: internal representation, latent space sampling and the generator architecture. We use Gram matrix as a suitable internal representation for modeling realistic fashion textures, and further design two dedicated modules for modulating Gram matrix into a low-dimension vector. Since fashion textures are scale-dependent, we propose a recursive auto-encoder to capture the dependency between multiple granularity levels of texture feature. Another important observation is that fashion textures are multi-modal. We fit and sample from a Gaussian mixture model in the latent space to improve the diversity of the generated textures. Extensive experiments demonstrate that our approach is capable of synthesizing more realistic and diverse fashion textures over other state-of-the-art methods.
This paper shows that when applying machine learning to digital zoom for photography, it is beneficial to use real, RAW sensor data for training. Existing learning-based super-resolution methods do not use real sensor data, instead operating on RGB i mages. In practice, these approaches result in loss of detail and accuracy in their digitally zoomed output when zooming in on distant image regions. We also show that synthesizing sensor data by resampling high-resolution RGB images is an oversimplified approximation of real sensor data and noise, resulting in worse image quality. The key barrier to using real sensor data for training is that ground truth high-resolution imagery is missing. We show how to obtain the ground-truth data with optically zoomed images and contribute a dataset, SR-RAW, for real-world computational zoom. We use SR-RAW to train a deep network with a novel contextual bilateral loss (CoBi) that delivers critical robustness to mild misalignment in input-output image pairs. The trained network achieves state-of-the-art performance in 4X and 8X computational zoom.
We propose an end-to-end-trainable attention module for convolutional neural network (CNN) architectures built for image classification. The module takes as input the 2D feature vector maps which form the intermediate representations of the input ima ge at different stages in the CNN pipeline, and outputs a 2D matrix of scores for each map. Standard CNN architectures are modified through the incorporation of this module, and trained under the constraint that a convex combination of the intermediate 2D feature vectors, as parameterised by the score matrices, must textit{alone} be used for classification. Incentivised to amplify the relevant and suppress the irrelevant or misleading, the scores thus assume the role of attention values. Our experimental observations provide clear evidence to this effect: the learned attention maps neatly highlight the regions of interest while suppressing background clutter. Consequently, the proposed function is able to bootstrap standard CNN architectures for the task of image classification, demonstrating superior generalisation over 6 unseen benchmark datasets. When binarised, our attention maps outperform other CNN-based attention maps, traditional saliency maps, and top object proposals for weakly supervised segmentation as demonstrated on the Object Discovery dataset. We also demonstrate improved robustness against the fast gradient sign method of adversarial attack.
Learning is an inherently continuous phenomenon. When humans learn a new task there is no explicit distinction between training and inference. As we learn a task, we keep learning about it while performing the task. What we learn and how we learn it varies during different stages of learning. Learning how to learn and adapt is a key property that enables us to generalize effortlessly to new settings. This is in contrast with conventional settings in machine learning where a trained model is frozen during inference. In this paper we study the problem of learning to learn at both training and test time in the context of visual navigation. A fundamental challenge in navigation is generalization to unseen scenes. In this paper we propose a self-adaptive visual navigation method (SAVN) which learns to adapt to new environments without any explicit supervision. Our solution is a meta-reinforcement learning approach where an agent learns a self-supervised interaction loss that encourages effective navigation. Our experiments, performed in the AI2-THOR framework, show major improvements in both success rate and SPL for visual navigation in novel scenes. Our code and data are available at: https://github.com/allenai/savn .
109 - Xiang Li , Lingjing Wang , Yi Fang 2021
Recent research has seen numerous supervised learning-based methods for 3D shape segmentation and remarkable performance has been achieved on various benchmark datasets. These supervised methods require a large amount of annotated data to train deep neural networks to ensure the generalization ability on the unseen test set. In this paper, we introduce a meta-learning-based method for few-shot 3D shape segmentation where only a few labeled samples are provided for the unseen classes. To achieve this, we treat the shape segmentation as a point labeling problem in the metric space. Specifically, we first design a meta-metric learner to transform input shapes into embedding space and our model learns to learn a proper metric space for each object class based on point embeddings. Then, for each class, we design a metric learner to extract part-specific prototype representations from a few support shapes and our model performs per-point segmentation over the query shapes by matching each point to its nearest prototype in the learned metric space. A metric-based loss function is used to dynamically modify distances between point embeddings thus maximizes in-part similarity while minimizing inter-part similarity. A dual segmentation branch is adopted to make full use of the support information and implicitly encourages consistency between the support and query prototypes. We demonstrate the superior performance of our proposed on the ShapeNet part dataset under the few-shot scenario, compared with well-established baseline and state-of-the-art semi-supervised methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا