ترغب بنشر مسار تعليمي؟ اضغط هنا

An application of time truncated single acceptance sampling inspection plan based on transmuted Rayleigh distribution

116   0   0.0 ( 0 )
 نشر من قبل Harsh Tripathi
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce single acceptance sampling inspection plan (SASIP) for transmuted Rayleigh (TR) distribution when the lifetime experiment is truncated at a prefixed time. Establish the proposed plan for different choices of confidence level, acceptance number and ratio of true mean lifetime to specified mean lifetime. Minimum sample size necessary to ensure a certain specified lifetime is obtained. Operating characteristic(OC) values and producers risk of proposed plan are presented. Two real life example has been presented to show the applicability of proposed SASIP.



قيم البحث

اقرأ أيضاً

The analysis of record-breaking events is of interest in fields such as climatology, hydrology, economy or sports. In connection with the record occurrence, we propose three distribution-free statistics for the changepoint detection problem. They are CUSUM-type statistics based on the upper and/or lower record indicators which occur in a series. Using a version of the functional central limit theorem, we show that the CUSUM-type statistics are asymptotically Kolmogorov distributed. The main results under the null hypothesis are based on series of independent and identically distributed random variables, but a statistic to deal with series with seasonal component and serial correlation is also proposed. A Monte Carlo study of size, power and changepoint estimate has been performed. Finally, the methods are illustrated by analyzing the time series of temperatures at Madrid, Spain. The $textsf{R}$ package $texttt{RecordTest}$ publicly available on CRAN implements the proposed methods.
To develop decision rules regarding acceptance or rejection of production lots based on sample data is the purpose of acceptance sampling inspection plan. Dependent sampling procedures cumulate results from several preceding production lots when test ing is expensive or destructive. This chaining of past lots reduce the sizes of the required samples, essential for acceptance or rejection of production lots. In this article, a new approach for chaining the past lot(s) results proposed, named as modified chain group acceptance sampling inspection plan, requires a smaller sample size than the commonly used sampling inspection plan, such as group acceptance sampling inspection plan and single acceptance sampling inspection plan. A comparison study has been done between the proposed and group acceptance sampling inspection plan as well as single acceptance sampling inspection plan. A example has been given to illustrate the proposed plan in a good manner.
58 - Thomas Browne 2015
This paper deals with the optimization of industrial asset management strategies, whose profitability is characterized by the Net Present Value (NPV) indicator which is assessed by a Monte Carlo simulator. The developed method consists in building a metamodel of this stochastic simulator, allowing to get, for a given model input, the NPV probability distribution without running the simulator. The present work is concentrated on the emulation of the quantile function of the stochastic simulator by interpolating well chosen basis functions and metamodeling their coefficients (using the Gaussian process metamodel). This quantile function metamodel is then used to treat a problem of strategy maintenance optimization (four systems installed on different plants), in order to optimize an NPV quantile. Using the Gaussian process framework, an adaptive design method (called QFEI) is defined by extending in our case the well known EGO algorithm. This allows to obtain an optimal solution using a small number of simulator runs.
94 - Ruth Heller , Yair Heller 2016
For testing two random vectors for independence, we consider testing whether the distance of one vector from a center point is independent from the distance of the other vector from a center point by a univariate test. In this paper we provide condit ions under which it is enough to have a consistent univariate test of independence on the distances to guarantee that the power to detect dependence between the random vectors increases to one, as the sample size increases. These conditions turn out to be minimal. If the univariate test is distribution-free, the multivariate test will also be distribution-free. If we consider multiple center points and aggregate the center-specific univariate tests, the power may be further improved, and the resulting multivariate test may be distribution-free for specific aggregation methods (if the univariate test is distribution-free). We show that several multivariate tests recently proposed in the literature can be viewed as instances of this general approach.
335 - Philip White , Emilio Porcu 2018
With the advent of wide-spread global and continental-scale spatiotemporal datasets, increased attention has been given to covariance functions on spheres over time. This paper provides results for stationary covariance functions of random fields def ined over $d$-dimensional spheres cross time. Specifically, we provide a bridge between the characterization in cite{berg-porcu} for covariance functions on spheres cross time and Gneitings lemma citep{gneiting2002} that deals with planar surfaces. We then prove that there is a valid class of covariance functions similar in form to the Gneiting class of space-time covariance functions citep{gneiting2002} that replaces the squared Euclidean distance with the great circle distance. Notably, the provided class is shown to be positive definite on every $d$-dimensional sphere cross time, while the Gneiting class is positive definite over $R^d times R$ for fixed $d$ only. In this context, we illustrate the value of our adapted Gneiting class by comparing examples from this class to currently established nonseparable covariance classes using out-of-sample predictive criteria. These comparisons are carried out on two climate reanalysis datasets from the National Centers for Environmental Prediction and National Center for Atmospheric Research. For these datasets, we show that examples from our covariance class have better predictive performance than competing models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا