ﻻ يوجد ملخص باللغة العربية
With the advent of wide-spread global and continental-scale spatiotemporal datasets, increased attention has been given to covariance functions on spheres over time. This paper provides results for stationary covariance functions of random fields defined over $d$-dimensional spheres cross time. Specifically, we provide a bridge between the characterization in cite{berg-porcu} for covariance functions on spheres cross time and Gneitings lemma citep{gneiting2002} that deals with planar surfaces. We then prove that there is a valid class of covariance functions similar in form to the Gneiting class of space-time covariance functions citep{gneiting2002} that replaces the squared Euclidean distance with the great circle distance. Notably, the provided class is shown to be positive definite on every $d$-dimensional sphere cross time, while the Gneiting class is positive definite over $R^d times R$ for fixed $d$ only. In this context, we illustrate the value of our adapted Gneiting class by comparing examples from this class to currently established nonseparable covariance classes using out-of-sample predictive criteria. These comparisons are carried out on two climate reanalysis datasets from the National Centers for Environmental Prediction and National Center for Atmospheric Research. For these datasets, we show that examples from our covariance class have better predictive performance than competing models.
Multivariate space-time data are increasingly available in various scientific disciplines. When analyzing these data, one of the key issues is to describe the multivariate space-time dependencies. Under the Gaussian framework, one needs to propose re
The assumption of separability of the covariance operator for a random image or hypersurface can be of substantial use in applications, especially in situations where the accurate estimation of the full covariance structure is unfeasible, either for
We propose a Bayesian methodology for estimating spiked covariance matrices with jointly sparse structure in high dimensions. The spiked covariance matrix is reparametrized in terms of the latent factor model, where the loading matrix is equipped wit
The Mat{e}rn family of isotropic covariance functions has been central to the theoretical development and application of statistical models for geospatial data. For global data defined over the whole sphere representing planet Earth, the natural dist
We offer a survey of recent results on covariance estimation for heavy-tailed distributions. By unifying ideas scattered in the literature, we propose user-friendly methods that facilitate practical implementation. Specifically, we introduce element-