ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting Surface Heat Flux on Complex Systems via Conv-LSTM

42   0   0.0 ( 0 )
 نشر من قبل Yinpeng Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing algorithms with iterations as the principle for 3D inverse heat conduction problems (IHCPs) are usually time-consuming. With the recent advancements in deep learning techniques, it is possible to apply the neural network to compute IHCPs. In this paper, a new framework based on Convolutional-LSTM is introduced to predict the transient heat flux via measured temperature. The inverse heat conduction models concerned in this work have 3D complex structures with non-linear boundary conditions and thermophysical parameters. In order to reach high precision, a forward solver based on the finite element method is utilized to generate sufficient data for training. The fully trained framework can provide accurate predictions efficiently once the measured temperature and models are acquired. It is believed that the proposed framework offers a new pattern for real-time heat flux inversion.

قيم البحث

اقرأ أيضاً

192 - Ben Teng , Can Yang , Jiming Liu 2015
Motivation: Genome-wide association studies (GWASs), which assay more than a million single nucleotide polymorphisms (SNPs) in thousands of individuals, have been widely used to identify genetic risk variants for complex diseases. However, most of th e variants that have been identified contribute relatively small increments of risk and only explain a small portion of the genetic variation in complex diseases. This is the so-called missing heritability problem. Evidence has indicated that many complex diseases are genetically related, meaning these diseases share common genetic risk variants. Therefore, exploring the genetic correlations across multiple related studies could be a promising strategy for removing spurious associations and identifying underlying genetic risk variants, and thereby uncovering the mystery of missing heritability in complex diseases. Results: We present a general and robust method to identify genetic patterns from multiple large-scale genomic datasets. We treat the summary statistics as a matrix and demonstrate that genetic patterns will form a low-rank matrix plus a sparse component. Hence, we formulate the problem as a matrix recovering problem, where we aim to discover risk variants shared by multiple diseases/traits and those for each individual disease/trait. We propose a convex formulation for matrix recovery and an efficient algorithm to solve the problem. We demonstrate the advantages of our method using both synthesized datasets and real datasets. The experimental results show that our method can successfully reconstruct both the shared and the individual genetic patterns from summary statistics and achieve better performance compared with alternative methods under a wide range of scenarios.
66 - Chiara Damiani 2013
An extensive rewiring of cell metabolism supports enhanced proliferation in cancer cells. We propose a systems level approach to describe this phenomenon based on Flux Balance Analysis (FBA). The approach does not explicit a cell biomass formation re action to be maximized, but takes into account an ensemble of alternative flux distributions that match the cancer metabolic rewiring (CMR) phenotype description. The underlying concept is that the analysis the common/distinguishing properties of the ensemble can provide indications on how CMR is achieved and sustained and thus on how it can be controlled.
Heat flux suppression in collisionless plasmas for a large range of plasma $beta$ is explored using two-dimensional particle-in-cell simulations with a strong, sustained thermal gradient. We find that a transition takes place between whistler-dominat ed (high-$beta$) and double-layer-dominated (low-$beta$) heat flux suppression. Whistlers saturate at small amplitude in the low beta limit and are unable to effectively suppress the heat flux. Electrostatic double layers suppress the heat flux to a mostly constant factor of the free streaming value once this transition happens. The double layer physics is an example of ion-electron coupling and occurs on a scale of roughly the electron Debye length. The scaling of ion heating associated with the various heat flux driven instabilities is explored over the full range of $beta$ explored. The range of plasma-$beta$s studied in this work makes it relevant to the dynamics of a large variety of astrophysical plasmas, including the intracluster medium of galaxy clusters, hot accretion flows, stellar and accretion disk coronae, and the solar wind.
63 - M. K. Mudunuru , S. Karra 2019
This paper presents a physics-informed machine learning (ML) framework to construct reduced-order models (ROMs) for reactive-transport quantities of interest (QoIs) based on high-fidelity numerical simulations. QoIs include species decay, product yie ld, and degree of mixing. The ROMs for QoIs are applied to quantify and understand how the chemical species evolve over time. First, high-resolution datasets for constructing ROMs are generated by solving anisotropic reaction-diffusion equations using a non-negative finite element formulation for different input parameters. Non-negative finite element formulation ensures that the species concentration is non-negative (which is needed for computing QoIs) on coarse computational grids even under high anisotropy. The reactive-mixing model input parameters are a time-scale associated with flipping of velocity, a spatial-scale controlling small/large vortex structures of velocity, a perturbation parameter of the vortex-based velocity, anisotropic dispersion strength/contrast, and molecular diffusion. Second, random forests, F-test, and mutual information criterion are used to evaluate the importance of model inputs/features with respect to QoIs. Third, Support Vector Machines (SVM) and Support Vector Regression (SVR) are used to construct ROMs based on the model inputs. Then, SVR-ROMs are used to predict scaling of QoIs. Qualitatively, SVR-ROMs are able to describe the trends observed in the scaling law associated with QoIs. Fourth, the scaling laws exponent dependence on model inputs/features are evaluated using $k$-means clustering. Finally, in terms of the computational cost, the proposed SVM-ROMs and SVR-ROMs are $mathcal{O}(10^7)$ times faster than running a high-fidelity numerical simulation for evaluating QoIs.
In this work, we present scalable balancing domain decomposition by constraints methods for linear systems arising from arbitrary order edge finite element discretizations of multi-material and heterogeneous 3D problems. In order to enforce the conti nuity across subdomains of the method, we use a partition of the interface objects (edges and faces) into sub-objects determined by the variation of the physical coefficients of the problem. For multi-material problems, a constant coefficient condition is enough to define this sub-partition of the objects. For arbitrarily heterogeneous problems, a relaxed version of the method is defined, where we only require that the maximal contrast of the physical coefficient in each object is smaller than a predefined threshold. Besides, the addition of perturbation terms to the preconditioner is empirically shown to be effective in order to deal with the case where the two coefficients of the model problem jump simultaneously across the interface. The new method, in contrast to existing approaches for problems in curl-conforming spaces does not require spectral information whilst providing robustness with regard to coefficient jumps and heterogeneous materials. A detailed set of numerical experiments, which includes the application of the preconditioner to 3D realistic cases, shows excellent weak scalability properties of the implementation of the proposed algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا