ﻻ يوجد ملخص باللغة العربية
We develop a concept of metasurface-assisted ghost imaging for non-local discrimination between a set of polarization objects. The specially designed metasurfaces are incorporated in the imaging system to perform parallel state transformations in general elliptical bases of quantum-entangled or classically-correlated photons. Then, only four or fewer correlation measurements between multiple metasurface outputs and a simple polarization-insensitive bucket detector after the object can allow for the identification of fully or partially transparent polarization elements and their arbitrary orientation angles. We rigorously establish that entangled photon states offer a fundamental advantage compared to classical correlations for a broad class of objects. The approach can find applications for real-time and low-light imaging across diverse spectral regions in dynamic environments.
We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a novel experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from
In Polarization Discrimination Imaging, the amplitude of a sinusoid from a rotating analyzer, representing residual polarized light and carrying information on the object, is detected with the help of a lock-in amplifier. When turbidity increases bey
In the task of discriminating between nonorthogonal quantum states from multiple copies, the key parameters are the error probability and the resources (number of copies) used. Previous studies have considered the task of minimizing the average error
We consider a quantum relay which is used by two parties to perform several continuous-variable protocols of quantum communication, from entanglement distribution (swapping and distillation), to quantum teleportation, and quantum key distribution. Th
Quantum - or classically correlated - light can be employed in various ways to improve resolution and measurement sensitivity. In an interaction-free measurement, a single photon can be used to reveal the presence of an object placed within one arm o