ترغب بنشر مسار تعليمي؟ اضغط هنا

Interaction-Free Ghost-Imaging of Structured Objects

80   0   0.0 ( 0 )
 نشر من قبل Yingwen Zhang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum - or classically correlated - light can be employed in various ways to improve resolution and measurement sensitivity. In an interaction-free measurement, a single photon can be used to reveal the presence of an object placed within one arm of an interferometer without being absorbed by it. This method has previously been applied to imaging. With a technique known as ghost imaging, entangled photon pairs are used for detecting an opaque object with significantly improved signal-to-noise ratio while preventing over-illumination. Here, we integrate these two methods to obtain a new imaging technique which we term interaction-free ghost-imaging that possesses the benefits of both techniques. While maintaining the image quality of conventional ghost-imaging, this new technique is also sensitive to phase and polarisation changes in the photons introduced by a structured object. Furthermore, thanks to the interaction-free nature of this new technique, it is possible to reduce the number of photons required to produce a clear image of the object (which could be otherwise damaged by the photons) making this technique superior for probing light-sensitive materials and biological tissues.

قيم البحث

اقرأ أيضاً

We propose a experimental scenario of edge enhancement ghost imaging of phase objects with nonlocal orbital angular momentum (OAM) phase filters. Spatially incoherent thermal light is separated into two daughter beams, the test and reference beams, i n which the detected objects and phase filters are symmetrically placed,respectively. The results of simulation experiment prove that the edge enhanced ghost images of phase objects can be achieved through the second-order light field intensity correlation measurement owing to the OAM correlation characteristics. Further simulation results demonstrate that the edge enhanced ghost imaging system dose not violate a Bell-type inequality for the OAM subspace, which reveals the classical nature of the thermal light correlation.
133 - Huan Cui , Jie Cao , Qun Hao 2021
Ghost imaging (GI) is a novel imaging method, which can reconstruct the object information by the light intensity correlation measurements. However, at present, the field of view (FOV) is limited to the illuminating range of the light patterns. To en large FOV of GI efficiently, here we proposed the omnidirectional ghost imaging system (OGIS), which can achieve a 360{deg} omnidirectional FOV at one shot only by adding a curved mirror. Moreover, by designing the retina-like annular patterns with log-polar patterns, OGIS can obtain unwrapping-free undistorted panoramic images with uniform resolution, which opens up a new way for the application of GI.
Fourier analysis of ghost imaging (FAGI) is proposed in this paper to analyze the properties of ghost imaging with thermal light sources. This new theory is compatible with the general correlation theory of intensity fluctuation and could explain som e amazed phenomena. Furthermore we design a series of experiments to verify the new theory and investigate the inherent properties of ghost imaging.
We develop a concept of metasurface-assisted ghost imaging for non-local discrimination between a set of polarization objects. The specially designed metasurfaces are incorporated in the imaging system to perform parallel state transformations in gen eral elliptical bases of quantum-entangled or classically-correlated photons. Then, only four or fewer correlation measurements between multiple metasurface outputs and a simple polarization-insensitive bucket detector after the object can allow for the identification of fully or partially transparent polarization elements and their arbitrary orientation angles. We rigorously establish that entangled photon states offer a fundamental advantage compared to classical correlations for a broad class of objects. The approach can find applications for real-time and low-light imaging across diverse spectral regions in dynamic environments.
We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a novel experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from the ghost imaging central image plane, we are able to dramatically increase the ghost image quality. When imaging a test pattern through turbulence, this method increased the imaged pattern visibility from V = 0.14 +/- 0.04 to V = 0.29 +/- 0.04.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا