ﻻ يوجد ملخص باللغة العربية
We address the following problem: given a Riemannian manifold $(M,g)$ and small parameters $varepsilon>0$ and $v>0$, is it possible to find $T>0$ and an absolutely continuous map $x:[0,T]rightarrow M, tmapsto x(t)$ satisfying $|dot{x}|_{infty}leq v$ and such that any geodesic of $(M,g)$ traveled at speed $1$ meets the open ball $B_g(x(t),varepsilon)subset M$ within time $T$? Our main motivation comes from the control of the wave equation: our results show that the controllability of the wave equation in any dimension of space can be improved by allowing the domain of control to move adequately, even very slowly. We first prove that, in any Riemannian manifold $(M,g)$ satisfying a geodesic recurrence condition (GRC), our problem has a positive answer for any $varepsilon>0$ and $v>0$, and we give examples of Riemannian manifolds $(M,g)$ for which (GRC) is satisfied. Then, we build an explicit example of a domain $Xsubsetmathbb{R}^2$ (with flat metric) containing convex obstacles, not satisfying (GRC), for which our problem has a negative answer if $varepsilon$ and $v$ are small enough, i.e., no sufficiently small ball moving sufficiently slowly can catch all geodesics of $X$.
The aim of this paper is to perform a Stackelberg strategy to control parabolic equations. We have one control, textit{the leader}, that is responsible for a null controllability property; additionally, we have a control textit{the follower} that sol
This paper concerns a controllability problem for blowup points on heat equation. It can be described as follows: In the absence of control, the solution to the linear heat system globally exists in a bounded domain $Omega$. While, for a given time $
We present a sufficient condition for approximate controllability of the bilinear discrete-spectrum Schrodinger equation exploiting the use of several controls. The controllability result extends to simultaneous controllability, approximate controlla
In this paper we prove an approximate controllability result for the bilinear Schrodinger equation. This result requires less restrictive non-resonance hypotheses on the spectrum of the uncontrolled Schrodinger operator than those present in the lite
We propose a numerical method to approximate the exact averaged boundary control of a family of wave equations depending on an unknown parameter sigma. More precisely the control, independent of sigma, that drives an initial data to a family of final