ﻻ يوجد ملخص باللغة العربية
In 1975 Bollobas, ErdH os, and Szemeredi asked the following question: given positive integers $n, t, r$ with $2le tle r-1$, what is the largest minimum degree $delta(G)$ among all $r$-partite graphs $G$ with parts of size $n$ and which do not contain a copy of $K_{t+1}$? The $r=t+1$ case has attracted a lot of attention and was fully resolved by Haxell and Szab{o}, and Szab{o} and Tardos in 2006. In this paper we investigate the $r>t+1$ case of the problem, which has remained dormant for over forty years. We resolve the problem exactly in the case when $r equiv -1 pmod{t}$, and up to an additive constant for many other cases, including when $r geq (3t-1)(t-1)$. Our approach utilizes a connection to the related problem of determining the maximum of the minimum degrees among the family of balanced $r$-partite $rn$-vertex graphs of chromatic number at most $t$.
An edge-coloring of a graph $G$ with colors $1,ldots,t$ is an emph{interval $t$-coloring} if all colors are used, and the colors of edges incident to each vertex of $G$ are distinct and form an integer interval. It is well-known that there are graphs
The notion of a 12-representable graph was introduced by Jones et al.. This notion generalizes the notions of the much studied permutation graphs and co-interval graphs. It is known that any 12-representable graph is a comparability graph, and also t
A total coloring of a graph $G$ is a coloring of its vertices and edges such that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. An interval total $t$-coloring of a graph $G$ is a total coloring of $G$ with col
A $k$-matching $M$ of a graph $G=(V,E)$ is a subset $Msubseteq E$ such that each connected component in the subgraph $F = (V,M)$ of $G$ is either a single-vertex graph or $k$-regular, i.e., each vertex has degree $k$. In this contribution, we are int
Graham and Pollak showed that the vertices of any graph $G$ can be addressed with $N$-tuples of three symbols, such that the distance between any two vertices may be easily determined from their addresses. An addressing is optimal if its length $N$ i