ﻻ يوجد ملخص باللغة العربية
An edge-coloring of a graph $G$ with colors $1,ldots,t$ is an emph{interval $t$-coloring} if all colors are used, and the colors of edges incident to each vertex of $G$ are distinct and form an integer interval. It is well-known that there are graphs that do not have interval colorings. The emph{deficiency} of a graph $G$, denoted by $mathrm{def}(G)$, is the minimum number of pendant edges whose attachment to $G$ leads to a graph admitting an interval coloring. In this paper we investigate the problem of determining or bounding of the deficiency of complete multipartite graphs. In particular, we obtain a tight upper bound for the deficiency of complete multipartite graphs. We also determine or bound the deficiency for some classes of complete multipartite graphs.
Graham and Pollak showed that the vertices of any graph $G$ can be addressed with $N$-tuples of three symbols, such that the distance between any two vertices may be easily determined from their addresses. An addressing is optimal if its length $N$ i
A emph{proper $t$-edge-coloring} of a graph $G$ is a mapping $alpha: E(G)rightarrow {1,ldots,t}$ such that all colors are used, and $alpha(e) eq alpha(e^{prime})$ for every pair of adjacent edges $e,e^{prime}in E(G)$. If $alpha $ is a proper edge-col
A total coloring of a graph $G$ is a coloring of its vertices and edges such that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. An interval total $t$-coloring of a graph $G$ is a total coloring of $G$ with col
Motivated by analogous questions in the setting of Steiner triple systems and Latin squares, Nenadov, Sudakov and Wagner [Completion and deficiency problems, Journal of Combinatorial Theory Series B, 2020] recently introduced the notion of graph defi
A proper edge coloring of a graph $G$ with colors $1,2,dots,t$ is called a cyclic interval $t$-coloring if for each vertex $v$ of $G$ the edges incident to $v$ are colored by consecutive colors, under the condition that color $1$ is considered as con