ﻻ يوجد ملخص باللغة العربية
We design and develop a new Particle-in-Cell (PIC) method for plasma simulations using Deep-Learning (DL) to calculate the electric field from the electron phase space. We train a Multilayer Perceptron (MLP) and a Convolutional Neural Network (CNN) to solve the two-stream instability test. We verify that the DL-based MLP PIC method produces the correct results using the two-stream instability: the DL-based PIC provides the expected growth rate of the two-stream instability. The DL-based PIC does not conserve the total energy and momentum. However, the DL-based PIC method is stable against the cold-beam instability, affecting traditional PIC methods. This work shows that integrating DL technologies into traditional computational methods is a viable approach for developing next-generation PIC algorithms.
We construct a particle integrator for nonrelativistic particles by means of the splitting method based on the exact flow of the equation of motion of particles in the presence of constant electric and magnetic field. This integrator is volume-preser
Particle-In-Cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including e.g. laser-wakefield acceleration, when viewed in a Lorentz-boosted frame), but remain sometimes infeasible due to the well
Quasi-phase matched direct laser acceleration (DLA) of electrons can be realized with guided, radially polarized laser pulses in density-modulated plasma waveguides. A 3-D particle-in-cell model has been developed to describe the interactions among t
SMILEI is a collaborative, open-source, object-oriented (C++) particle-in-cell code. To benefit from the latest advances in high-performance computing (HPC), SMILEI is co-developed by both physicists and HPC experts. The codes structures, capabilitie
The 3D quasi-static particle-in-cell (PIC) algorithm is a very efficient method for modeling short-pulse laser or relativistic charged particle beam-plasma interactions. In this algorithm, the plasma response to a non-evolving laser or particle beam