ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal transport for model calibration

71   0   0.0 ( 0 )
 نشر من قبل Shiyi Wang
 تاريخ النشر 2021
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a survey of recent results on model calibration by Optimal Transport. We present the general framework and then discuss the calibration of local, and local-stochastic, volatility models to European options, the joint VIX/SPX calibration problem as well as calibration to some path-dependent options. We explain the numerical algorithms and present examples both on synthetic and market data.



قيم البحث

اقرأ أيضاً

This paper addresses the joint calibration problem of SPX options and VIX options or futures. We show that the problem can be formulated as a semimartingale optimal transport problem under a finite number of discrete constraints, in the spirit of [ar Xiv:1906.06478]. We introduce a PDE formulation along with its dual counterpart. The solution, a calibrated diffusion process, can be represented via the solutions of Hamilton-Jacobi-Bellman equations arising from the dual formulation. The method is tested on both simulated data and market data. Numerical examples show that the model can be accurately calibrated to SPX options, VIX options and VIX futures simultaneously.
104 - Yu-Jui Huang , Xiang Yu 2019
An unconventional approach for optimal stopping under model ambiguity is introduced. Besides ambiguity itself, we take into account how ambiguity-averse an agent is. This inclusion of ambiguity attitude, via an $alpha$-maxmin nonlinear expectation, r enders the stopping problem time-inconsistent. We look for subgame perfect equilibrium stopping policies, formulated as fixed points of an operator. For a one-dimensional diffusion with drift and volatility uncertainty, we show that every equilibrium can be obtained through a fixed-point iteration. This allows us to capture much more diverse behavior, depending on an agents ambiguity attitude, beyond the standard worst-case (or best-case) analysis. In a concrete example of real options valuation under volatility uncertainty, all equilibrium stopping policies, as well as the best one among them, are fully characterized. It demonstrates explicitly the effect of ambiguity attitude on decision making: the more ambiguity-averse, the more eager to stop -- so as to withdraw from the uncertain environment. The main result hinges on a delicate analysis of continuous sample paths in the canonical space and the capacity theory. To resolve measurability issues, a generalized measurable projection theorem, new to the literature, is also established.
115 - Yu-Jui Huang , Zhenhua Wang 2020
We study an optimal stopping problem under non-exponential discounting, where the state process is a multi-dimensional continuous strong Markov process. The discount function is taken to be log sub-additive, capturing decreasing impatience in behavio ral economics. On strength of probabilistic potential theory, we establish the existence of an optimal equilibrium among a sufficiently large collection of equilibria, consisting of finely closed equilibria satisfying a boundary condition. This generalizes the existence of optimal equilibria for one-dimensional stopping problems in prior literature.
119 - Zongxia Liang , Yang Liu , Ming Ma 2021
We propose a general family of piecewise hyperbolic absolute risk aversion (PHARA) utility, including many non-standard utilities as examples. A typical application is the composition of an HARA preference and a piecewise linear payoff in hedge fund management. We derive a unified closed-form formula of the optimal portfolio, which is a four-term division. The formula has clear economic meanings, reflecting the behavior of risk aversion, risk seeking, loss aversion and first-order risk aversion. One main finding is that risk-taking behaviors are greatly increased by non-concavity and reduced by non-differentiability.
In this paper we propose and solve an optimal dividend problem with capital injections over a finite time horizon. The surplus dynamics obeys a linearly controlled drifted Brownian motion that is reflected at the origin, dividends give rise to time-d ependent instantaneous marginal profits, whereas capital injections are subject to time-dependent instantaneous marginal costs. The aim is to maximize the sum of a liquidation value at terminal time and of the total expected profits from dividends, net of the total expected costs for capital injections. Inspired by the study of El Karoui and Karatzas (1989) on reflected follower problems, we relate the optimal dividend problem with capital injections to an optimal stopping problem for a drifted Brownian motion that is absorbed at the origin. We show that whenever the optimal stopping rule is triggered by a time-dependent boundary, the value function of the optimal stopping problem gives the derivative of the value function of the optimal dividend problem. Moreover, the optimal dividend strategy is also triggered by the moving boundary of the associated stopping problem. The properties of this boundary are then investigated in a case study in which instantaneous marginal profits and costs from dividends and capital injections are constants discounted at a constant rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا