ﻻ يوجد ملخص باللغة العربية
We study an optimal stopping problem under non-exponential discounting, where the state process is a multi-dimensional continuous strong Markov process. The discount function is taken to be log sub-additive, capturing decreasing impatience in behavioral economics. On strength of probabilistic potential theory, we establish the existence of an optimal equilibrium among a sufficiently large collection of equilibria, consisting of finely closed equilibria satisfying a boundary condition. This generalizes the existence of optimal equilibria for one-dimensional stopping problems in prior literature.
An unconventional approach for optimal stopping under model ambiguity is introduced. Besides ambiguity itself, we take into account how ambiguity-averse an agent is. This inclusion of ambiguity attitude, via an $alpha$-maxmin nonlinear expectation, r
In this paper we propose and solve an optimal dividend problem with capital injections over a finite time horizon. The surplus dynamics obeys a linearly controlled drifted Brownian motion that is reflected at the origin, dividends give rise to time-d
We consider an incomplete multi-asset binomial market model. We prove that for a wide class of contingent claims the extremal multi-step martingale measure is a power of the corresponding single-step extremal martingale measure. This allows for close
A new method for stochastic control based on neural networks and using randomisation of discrete random variables is proposed and applied to optimal stopping time problems. The method models directly the policy and does not need the derivation of a d
We provide a survey of recent results on model calibration by Optimal Transport. We present the general framework and then discuss the calibration of local, and local-stochastic, volatility models to European options, the joint VIX/SPX calibration pr