ﻻ يوجد ملخص باللغة العربية
A rooted tree $T$ with vertex labels $t(v)$ and set-valued edge labels $lambda(e)$ defines maps $delta$ and $varepsilon$ on the pairs of leaves of $T$ by setting $delta(x,y)=q$ if the last common ancestor $text{lca}(x,y)$ of $x$ and $y$ is labeled $q$, and $min varepsilon(x,y)$ if $minlambda(e)$ for at least one edge $e$ along the path from $text{lca}(x,y)$ to $y$. We show that a pair of maps $(delta,varepsilon)$ derives from a tree $(T,t,lambda)$ if and only if there exists a common refinement of the (unique) least-resolved vertex labeled tree $(T_{delta},t_{delta})$ that explains $delta$ and the (unique) least resolved edge labeled tree $(T_{varepsilon},lambda_{varepsilon})$ that explains $varepsilon$ (provided both trees exist). This result remains true if certain combinations of labels at incident vertices and edges are forbidden.
Tree-chromatic number is a chromatic version of treewidth, where the cost of a bag in a tree-decomposition is measured by its chromatic number rather than its size. Path-chromatic number is defined analogously. These parameters were introduced by Sey
Tree-width and its linear variant path-width play a central role for the graph minor relation. In particular, Robertson and Seymour (1983) proved that for every tree~$T$, the class of graphs that do not contain $T$ as a minor has bounded path-width.
Minimum Bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the width of the bisection, which is defined as the number of edges between these two sets. We first consider this prob
Best match graphs (BMGs) are a class of colored digraphs that naturally appear in mathematical phylogenetics and can be approximated with the help of similarity measures between gene sequences, albeit not without errors. The corresponding graph editi
Genome-scale orthology assignments are usually based on reciprocal best matches. In the absence of horizontal gene transfer (HGT), every pair of orthologs forms a reciprocal best match. Incorrect orthology assignments therefore are always false posit