ترغب بنشر مسار تعليمي؟ اضغط هنا

NOTE: Solution for KDD-CUP 2021 WikiKG90M-LSC

86   0   0.0 ( 0 )
 نشر من قبل Weiyue Su
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

WikiKG90M in KDD Cup 2021 is a large encyclopedic knowledge graph, which could benefit various downstream applications such as question answering and recommender systems. Participants are invited to complete the knowledge graph by predicting missing triplets. Recent representation learning methods have achieved great success on standard datasets like FB15k-237. Thus, we train the advanced algorithms in different domains to learn the triplets, including OTE, QuatE, RotatE and TransE. Significantly, we modified OTE into NOTE (short for Norm-OTE) for better performance. Besides, we use both the DeepWalk and the post-smoothing technique to capture the graph structure for supplementation. In addition to the representations, we also use various statistical probabilities among the head entities, the relations and the tail entities for the final prediction. Experimental results show that the ensemble of state-of-the-art representation learning methods could draw on each others strengths. And we develop feature engineering from validation candidates for further improvements. Please note that we apply the same strategy on the test set for final inference. And these features may not be practical in the real world when considering ranking against all the entities.



قيم البحث

اقرأ أيضاً

We took part in the city brain challenge competition and achieved the 8th place. In this competition, the players are provided with a real-world city-scale road network and its traffic demand derived from real traffic data. The players are asked to c oordinate the traffic signals with a self-designed agent to maximize the number of vehicles served while maintaining an acceptable delay. In this abstract paper, we present an overall analysis and our detailed solution to this competition. Our approach is mainly based on the adaptation of the deep Q-network (DQN) for real-time traffic signal control. From our perspective, the major challenge of this competition is how to extend the classical DQN framework to traffic signals control in real-world complex road network and traffic flow situation. After trying and implementing several classical reward functions, we finally chose to apply our newly-designed reward in our agent. By applying our newly-proposed reward function and carefully tuning the control scheme, an agent based on a single DQN model can rank among the top 15 teams. We hope this paper could serve, to some extent, as a baseline solution to traffic signal control of real-world road network and inspire further attempts and researches.
In this technical report, we present our solution of KDD Cup 2021 OGB Large-Scale Challenge - PCQM4M-LSC Track. We adopt Graphormer and ExpC as our basic models. We train each model by 8-fold cross-validation, and additionally train two Graphormer mo dels on the union of training and validation sets with different random seeds. For final submission, we use a naive ensemble for these 18 models by taking average of their outputs. Using our method, our team MachineLearning achieved 0.1200 MAE on test set, which won the first place in KDD Cup graph prediction track.
IEEE BigData 2021 Cup: Soft Sensing at Scale is a data mining competition organized by Seagate Technology, in association with the IEEE BigData 2021 conference. The scope of this challenge is to tackle the task of classifying soft sensing data with m achine learning techniques. In this paper we go into the details of the challenge and describe the data set provided to participants. We define the metrics of interest, baseline models, and describe approaches we found meaningful which may be a good starting point for further analysis. We discuss the results obtained with our approaches and give insights on what potential challenges participants may run into. Students, researchers, and anyone interested in working on a major industrial problem are welcome to participate in the challenge!
The 2021 SIGIR workshop on eCommerce is hosting the Coveo Data Challenge for In-session prediction for purchase intent and recommendations. The challenge addresses the growing need for reliable predictions within the boundaries of a shopping session, as customer intentions can be different depending on the occasion. The need for efficient procedures for personalization is even clearer if we consider the e-commerce landscape more broadly: outside of giant digital retailers, the constraints of the problem are stricter, due to smaller user bases and the realization that most users are not frequently returning customers. We release a new session-based dataset including more than 30M fine-grained browsing events (product detail, add, purchase), enriched by linguistic behavior (queries made by shoppers, with items clicked and items not clicked after the query) and catalog meta-data (images, text, pricing information). On this dataset, we ask participants to showcase innovative solutions for two open problems: a recommendation task (where a model is shown some events at the start of a session, and it is asked to predict future product interactions); an intent prediction task, where a model is shown a session containing an add-to-cart event, and it is asked to predict whether the item will be bought before the end of the session.
44 - Qi Zhu , Hongwei Ng , Liyuan Liu 2017
Wikidata is the new, large-scale knowledge base of the Wikimedia Foundation. As it can be edited by anyone, entries frequently get vandalized, leading to the possibility that it might spread of falsified information if such posts are not detected. Th e WSDM 2017 Wiki Vandalism Detection Challenge requires us to solve this problem by computing a vandalism score denoting the likelihood that a revision corresponds to an act of vandalism and performance is measured using the ROC-AUC obtained on a held-out test set. This paper provides the details of our submission that obtained an ROC-AUC score of 0.91976 in the final evaluation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا