ﻻ يوجد ملخص باللغة العربية
The hybrid electric system has good potential for unmanned tracked vehicles due to its excellent power and economy. Due to unmanned tracked vehicles have no traditional driving devices, and the driving cycle is uncertain, it brings new challenges to conventional energy management strategies. This paper proposes a novel energy management strategy for unmanned tracked vehicles based on local speed planning. The contributions are threefold. Firstly, a local speed planning algorithm is adopted for the input of driving cycle prediction to avoid the dependence of traditional vehicles on drivers operation. Secondly, a prediction model based on Convolutional Neural Networks and Long Short-Term Memory (CNN-LSTM) is proposed, which is used to process both the planned and the historical velocity series to improve the prediction accuracy. Finally, based on the prediction results, the model predictive control algorithm is used to realize the real-time optimization of energy management. The validity of the method is verified by simulation using collected data from actual field experiments of our unmanned tracked vehicle. Compared with multi-step neural networks, the prediction model based on CNN-LSTM improves the prediction accuracy by 20%. Compared with the traditional regular energy management strategy, the energy management strategy based on model predictive control reduces fuel consumption by 7%.
In modern networks, the use of drones as mobile base stations (MBSs) has been discussed for coverage flexibility. However, the realization of drone-based networks raises several issues. One of the critical issues is drones are extremely power-hungry.
Due to the rapid development technologies for small unmanned aircraft systems (sUAS), the supply and demand market for sUAS is expanding globally. With the great number of sUAS ready to fly in civilian airspace, an sUAS aircraft traffic management sy
A system of cooperative unmanned aerial vehicles (UAVs) is a group of agents interacting with each other and the surrounding environment to achieve a specific task. In contrast with a single UAV, UAV swarms are expected to benefit efficiency, flexibi
This paper investigates the cooperative control of multiple unmanned and manned vehicles via an output containment control approach for heterogeneous discrete-time multiagent systems. The unmanned vehicles act as leading vehicles to guide the manned
Real-time vehicle dispatching operations in traditional car-sharing systems is an already computationally challenging scheduling problem. Electrification only exacerbates the computational difficulties as charge level constraints come into play. To o