ترغب بنشر مسار تعليمي؟ اضغط هنا

A Real-Time Dispatching Strategy for Shared Automated Electric Vehicles with Performance Guarantees

152   0   0.0 ( 0 )
 نشر من قبل Saif Jabari
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Real-time vehicle dispatching operations in traditional car-sharing systems is an already computationally challenging scheduling problem. Electrification only exacerbates the computational difficulties as charge level constraints come into play. To overcome this complexity, we employ an online minimum drift plus penalty (MDPP) approach for SAEV systems that (i) does not require a priori knowledge of customer arrival rates to the different parts of the system (i.e. it is practical from a real-world deployment perspective), (ii) ensures the stability of customer waiting times, (iii) ensures that the deviation of dispatch costs from a desirable dispatch cost can be controlled, and (iv) has a computational time-complexity that allows for real-time implementation. Using an agent-based simulator developed for SAEV systems, we test the MDPP approach under two scenarios with real-world calibrated demand and charger distributions: 1) a low-demand scenario with long trips, and 2) a high-demand scenario with short trips. The comparisons with other algorithms under both scenarios show that the proposed online MDPP outperforms all other algorithms in terms of both reduced customer waiting times and vehicle dispatching costs.



قيم البحث

اقرأ أيضاً

Systematic design and verification of advanced control strategies for complex systems under uncertainty largely remains an open problem. Despite the promise of blackbox optimization methods for automated controller tuning, they generally lack formal guarantees on the solution quality, which is especially important in the control of safety-critical systems. This paper focuses on obtaining closed-loop performance guarantees for automated controller tuning, which can be formulated as a black-box optimization problem under uncertainty. We use recent advances in non-convex scenario theory to provide a distribution-free bound on the probability of the closed-loop performance measures. To mitigate the computational complexity of the data-driven scenario optimization method, we restrict ourselves to a discrete set of candidate tuning parameters. We propose to generate these candidates using constrained Bayesian optimization run multiple times from different random seed points. We apply the proposed method for tuning an economic nonlinear model predictive controller for a semibatch reactor modeled by seven highly nonlinear differential equations.
Distributed renewable energy systems are now widely installed in many buildings, transforming the buildings into electricity prosumers. Existing studies have developed some advanced building side controls that enable renewable energy sharing and that aim to optimise building-cluster-level performance via regulating the energy storage charging/ discharging. However, the flexible demand shifting ability of electric vehicles is not considered in these building side controls. For instance, the electric vehicle charging will usually start once they are plugged into charging stations. But, in such charging period the renewable generation may be insufficient to cover the EV charging load, leading to grid electricity imports. Consequently, the building-cluster-level performance is not optimised. Therefore, this study proposes a coordinated control of building prosumers for improving the cluster-level performance, by making use of energy sharing and storage capability of electricity batteries in both buildings and EVs. An EV charging/discharging model is first developed. Then, based on the predicted future 24h electricity demand and renewable generation data, the coordinated control first considers the whole building cluster as one integrated building and optimises its operation as well as the EV charging/discharging using genetic algorithm. Next, the operation of individual buildings in the future 24h is coordinated using nonlinear programming. For validation, the developed control has been tested on a real building cluster in Ludvika, Sweden. The study results show that the developed control can increase the cluster-level daily renewable self-consumption rate by 19% and meanwhile reduce the daily electricity bills by 36% compared with the conventional controls.
After disasters, distribution networks have to be restored by repair, reconfiguration, and power dispatch. During the restoration process, changes can occur in real time that deviate from the situations considered in pre-designed planning strategies. That may result in the pre-designed plan to become far from optimal or even unimplementable. This paper proposes a centralized-distributed bi-level optimization method to solve the real-time restoration planning problem. The first level determines integer variables related to routing of the crews and the status of the switches using a genetic algorithm (GA), while the second level determines the dispatch of active/reactive power by using distributed model predictive control (DMPC). A novel Aitken- DMPC solver is proposed to accelerate convergence and to make the method suitable for real-time decision making. A case study based on the IEEE 123-bus system is considered, and the acceleration performance of the proposed Aitken-DMPC solver is evaluated and compared with the standard DMPC method.
111 - Hang Shuai , Member , IEEE 2021
The uncertainties from distributed energy resources (DERs) bring significant challenges to the real-time operation of microgrids. In addition, due to the nonlinear constraints in the AC power flow equation and the nonlinearity of the battery storage model, etc., the optimization of the microgrid is a mixed-integer nonlinear programming (MINLP) problem. It is challenging to solve this kind of stochastic nonlinear optimization problem. To address the challenge, this paper proposes a deep reinforcement learning (DRL) based optimization strategy for the real-time operation of the microgrid. Specifically, we construct the detailed operation model for the microgrid and formulate the real-time optimization problem as a Markov Decision Process (MDP). Then, a double deep Q network (DDQN) based architecture is designed to solve the MINLP problem. The proposed approach can learn a near-optimal strategy only from the historical data. The effectiveness of the proposed algorithm is validated by the simulations on a 10-bus microgrid system and a modified IEEE 69-bus microgrid system. The numerical simulation results demonstrate that the proposed approach outperforms several existing methods.
The paper considers the problem of controlling Connected and Automated Vehicles (CAVs) traveling through a three-entry roundabout so as to jointly minimize both the travel time and the energy consumption while providing speed-dependent safety guarant ees, as well as satisfying velocity and acceleration constraints. We first design a systematic approach to dynamically determine the safety constraints and derive the unconstrained optimal control solution. A joint optimal control and barrier function (OCBF) method is then applied to efficiently obtain a controller that optimally track the unconstrained optimal solution while guaranteeing all the constraints. Simulation experiments are performed to compare the optimal controller to a baseline of human-driven vehicles showing effectiveness under symmetric and asymmetric roundabout configurations, balanced and imbalanced traffic rates and different sequencing rules for CAVs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا