ﻻ يوجد ملخص باللغة العربية
Code summarization is the task of generating natural language description of source code, which is important for program understanding and maintenance. Existing approaches treat the task as a machine translation problem (e.g., from Java to English) and applied Neural Machine Translation models to solve the problem. These approaches only consider a given code unit (e.g., a method) without its broader context. The lacking of context may hinder the NMT model from gathering sufficient information for code summarization. Furthermore, existing approaches use a fixed vocabulary and do not fully consider the words in code, while many words in the code summary may come from the code. In this work, we present a neural network model named ToPNN for code summarization, which uses the topics in a broader context (e.g., class) to guide the neural networks that combine the generation of new words and the copy of existing words in code. Based on the model we present an approach for generating natural language code summaries at the method level (i.e., method comments). We evaluate our approach using a dataset with 4,203,565 commented Java methods. The results show significant improvement over state-of-the-art approaches and confirm the positive effect of class topics and the copy mechanism.
Comment generation, a new and challenging task in Natural Language Generation (NLG), attracts a lot of attention in recent years. However, comments generated by previous work tend to lack pertinence and diversity. In this paper, we propose a novel ge
Wikipedia abstract generation aims to distill a Wikipedia abstract from web sources and has met significant success by adopting multi-document summarization techniques. However, previous works generally view the abstract as plain text, ignoring the f
Mutation analysis can provide valuable insights into both System Under Test (SUT) and its test suite. However, it is not scalable due to the cost of building and testing a large number of mutants. Predictive Mutation Testing (PMT) has been proposed t
A great part of software development involves conceptualizing or communicating the underlying procedures and logic that needs to be expressed in programs. One major difficulty of programming is turning concept into code, especially when dealing with
To simultaneously capture syntax and global semantics from a text corpus, we propose a new larger-context recurrent neural network (RNN) based language model, which extracts recurrent hierarchical semantic structure via a dynamic deep topic model to