ترغب بنشر مسار تعليمي؟ اضغط هنا

TWAG: A Topic-Guided Wikipedia Abstract Generator

146   0   0.0 ( 0 )
 نشر من قبل Fangwei Zhu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Wikipedia abstract generation aims to distill a Wikipedia abstract from web sources and has met significant success by adopting multi-document summarization techniques. However, previous works generally view the abstract as plain text, ignoring the fact that it is a description of a certain entity and can be decomposed into different topics. In this paper, we propose a two-stage model TWAG that guides the abstract generation with topical information. First, we detect the topic of each input paragraph with a classifier trained on existing Wikipedia articles to divide input documents into different topics. Then, we predict the topic distribution of each abstract sentence, and decode the sentence from topic-aware representations with a Pointer-Generator network. We evaluate our model on the WikiCatSum dataset, and the results show that modelnames outperforms various existing baselines and is capable of generating comprehensive abstracts. Our code and dataset can be accessed at url{https://github.com/THU-KEG/TWAG}



قيم البحث

اقرأ أيضاً

111 - Xin Wang , Xin Peng , Jun Sun 2021
Code summarization is the task of generating natural language description of source code, which is important for program understanding and maintenance. Existing approaches treat the task as a machine translation problem (e.g., from Java to English) a nd applied Neural Machine Translation models to solve the problem. These approaches only consider a given code unit (e.g., a method) without its broader context. The lacking of context may hinder the NMT model from gathering sufficient information for code summarization. Furthermore, existing approaches use a fixed vocabulary and do not fully consider the words in code, while many words in the code summary may come from the code. In this work, we present a neural network model named ToPNN for code summarization, which uses the topics in a broader context (e.g., class) to guide the neural networks that combine the generation of new words and the copy of existing words in code. Based on the model we present an approach for generating natural language code summaries at the method level (i.e., method comments). We evaluate our approach using a dataset with 4,203,565 commented Java methods. The results show significant improvement over state-of-the-art approaches and confirm the positive effect of class topics and the copy mechanism.
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. To develop an effective CRS, the support of high-quality datasets is essential. Existing CRS datasets mainly focus on immediate r equests from users, while lack proactive guidance to the recommendation scenario. In this paper, we contribute a new CRS dataset named textbf{TG-ReDial} (textbf{Re}commendation through textbf{T}opic-textbf{G}uided textbf{Dial}og). Our dataset has two major features. First, it incorporates topic threads to enforce natural semantic transitions towards the recommendation scenario. Second, it is created in a semi-automatic way, hence human annotation is more reasonable and controllable. Based on TG-ReDial, we present the task of topic-guided conversational recommendation, and propose an effective approach to this task. Extensive experiments have demonstrated the effectiveness of our approach on three sub-tasks, namely topic prediction, item recommendation and response generation. TG-ReDial is available at https://github.com/RUCAIBox/TG-ReDial.
We introduce a new approach for abstractive text summarization, Topic-Guided Abstractive Summarization, which calibrates long-range dependencies from topic-level features with globally salient content. The idea is to incorporate neural topic modeling with a Transformer-based sequence-to-sequence (seq2seq) model in a joint learning framework. This design can learn and preserve the global semantics of the document, which can provide additional contextual guidance for capturing important ideas of the document, thereby enhancing the generation of summary. We conduct extensive experiments on two datasets and the results show that our proposed model outperforms many extractive and abstractive systems in terms of both ROUGE measurements and human evaluation. Our code is available at: https://github.com/chz816/tas.
78 - Dandan Guo , Bo Chen , Ruiying Lu 2019
To simultaneously capture syntax and global semantics from a text corpus, we propose a new larger-context recurrent neural network (RNN) based language model, which extracts recurrent hierarchical semantic structure via a dynamic deep topic model to guide natural language generation. Moving beyond a conventional RNN-based language model that ignores long-range word dependencies and sentence order, the proposed model captures not only intra-sentence word dependencies, but also temporal transitions between sentences and inter-sentence topic dependencies. For inference, we develop a hybrid of stochastic-gradient Markov chain Monte Carlo and recurrent autoencoding variational Bayes. Experimental results on a variety of real-world text corpora demonstrate that the proposed model not only outperforms larger-context RNN-based language models, but also learns interpretable recurrent multilayer topics and generates diverse sentences and paragraphs that are syntactically correct and semantically coherent.
92 - Junheng Huang , Lu Pan , Kang Xu 2020
Comment generation, a new and challenging task in Natural Language Generation (NLG), attracts a lot of attention in recent years. However, comments generated by previous work tend to lack pertinence and diversity. In this paper, we propose a novel ge neration model based on Topic-aware Pointer-Generator Networks (TPGN), which can utilize the topic information hidden in the articles to guide the generation of pertinent and diversified comments. Firstly, we design a keyword-level and topic-level encoder attention mechanism to capture topic information in the articles. Next, we integrate the topic information into pointer-generator networks to guide comment generation. Experiments on a large scale of comment generation dataset show that our model produces the valuable comments and outperforms competitive baseline models significantly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا