ﻻ يوجد ملخص باللغة العربية
Intense transient electric ({bf E}) and magnetic ({bf B}) fields are produced in the high energy heavy-ion collisions. The electromagnetic fields produced in such high-energy heavy-ion collisions are proposed to give rise to a multitude of exciting phenomenon including the Chiral Magnetic Effect. We use a Monte Carlo (MC) Glauber model to calculate the electric and magnetic fields, more specifically their scalar product $bf{E}cdotbf{B}$, as a function of space-time on an event-by-event basis for the Au+Au collisions at $sqrt{s_{NN}}=200$ GeV for different centrality classes. We also calculate the same for the isobars Ruthenium and Zirconium at $sqrt{s_{NN}}=200$ GeV. In the QED sector $bf{E}cdotbf{B}$ acts as a source of Chiral Separation Effect, Chiral Magnetic Wave, etc., which are associated phenomena to the Chiral Magnetic Effect. We also study the relationships between the electromagnetic symmetry plane angle defined by $bf{E}cdotbf{B}$ ($psi_{E.B}$) and the participant plane angle $psi_{P}$ defined from the participating nucleons for the second-fifth order harmonics.
With a Yang-Mills field, stratified shear flow initial state and a high resolution (3+1)D Particle-in-Cell Relativistic (PICR) hydrodynamic model, we calculate the $Lambda$ polarization for peripheral Au+Au collisions at RHIC energy of $sqrt{S_{NN}}=
Measurements of three-dimensional correlation functions of like-sign low transverse momentum kaon pairs from Au+Au collisions at top RHIC energy $sqrt s_{NN}$=200 GeV are presented. The extracted kaon source function is narrower than the pion one and
We report the STAR measurements of dielectron ($e^+e^-$) production at midrapidity ($|y_{ee}|<$1) in Au+Au collisions at $sqrt{s_{rm NN}}$ = 200,GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 ($rho$-
We report first measurements of $e^{+}e^{-}$ pair production in the mass region 0.4 $<M_{ee}<$ 2.6 GeV/$c^{2}$ at low transverse momentum ($p_T<$ 0.15 GeV/$c$) in non-central Au$+$Au collisions at $sqrt{s_{NN}}$ = 200 GeV and U$+$U collisions at $sqr
Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the mediu