ﻻ يوجد ملخص باللغة العربية
With a Yang-Mills field, stratified shear flow initial state and a high resolution (3+1)D Particle-in-Cell Relativistic (PICR) hydrodynamic model, we calculate the $Lambda$ polarization for peripheral Au+Au collisions at RHIC energy of $sqrt{S_{NN}}=200$ GeV. The obtained longitudinal polarization in our model agrees with the experimental signature and the quadrupole structure on transverse momentum plane. It is found that the relativistic correction (2nd term), arising from expansion and from the time component of the thermal vorticity, plays a crucial role in our results. This term is changing the signature and exceeds the first term, arising from the classical vorticity. Finally, the global polarization in our model shows no significant dependence on rapidity, which agrees with the experimental data. It is also found that the second term flattens the sharp peak arising from the classical vorticity (1st term).
Global polarization of $Lambda$ hyperons has been measured to be of the order of a few tenths of a percent in Au+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV, with no significant difference between $Lambda$ and $bar{Lambda}$. These new results reveal
Measurements of three-dimensional correlation functions of like-sign low transverse momentum kaon pairs from Au+Au collisions at top RHIC energy $sqrt s_{NN}$=200 GeV are presented. The extracted kaon source function is narrower than the pion one and
We report the STAR measurements of dielectron ($e^+e^-$) production at midrapidity ($|y_{ee}|<$1) in Au+Au collisions at $sqrt{s_{rm NN}}$ = 200,GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 ($rho$-
The $Lambda$ ($bar{Lambda}$) hyperon polarization along the beam direction has been measured for the first time in Au+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The polarization dependence on the hyperons emission angle relative to the second-orde
We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair trans