ترغب بنشر مسار تعليمي؟ اضغط هنا

The maximum size of a graph with prescribed order, circumference and minimum degree

114   0   0.0 ( 0 )
 نشر من قبل Leilei Zhang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Leilei Zhang




اسأل ChatGPT حول البحث

ErdH{o}s determined the maximum size of a nonhamiltonian graph of order $n$ and minimum degree at least $k$ in 1962. Recently, Ning and Peng generalized. ErdH{o}s work and gave the maximum size $h(n,c,k)$ of graphs with prescribed order $n$, circumference $c$ and minimum degree at least $k.$ But for some triples $n,c,k,$ the maximum size is not attained by a graph of minimum degree $k.$ For example, $h(15,14,3)=77$ is attained by a unique graph of minimum degree $7,$ not $3.$ In this paper we obtain more precise information by determining the maximum size of a graph with prescribed order, circumference and minimum degree. Consequently we solve the corresponding problem for longest paths. All these results on the size of graphs have cliq



قيم البحث

اقرأ أيضاً

167 - Xingzhi Zhan , Leilei Zhang 2021
Motivated by work of ErdH{o}s, Ota determined the maximum size $g(n,k)$ of a $k$-connected nonhamiltonian graph of order $n$ in 1995. But for some pairs $n,k,$ the maximum size is not attained by a graph of connectivity $k.$ For example, $g(15,3)=77$ is attained by a unique graph of connectivity $7,$ not $3.$ In this paper we obtain more precise information by determining the maximum size of a nonhamiltonian graph of order $n$ and connectivity $k,$ and determining the extremal graphs. Consequently we solve the corresponding problem for nontraceable graphs.
Given a simple graph $G$, denote by $Delta(G)$, $delta(G)$, and $chi(G)$ the maximum degree, the minimum degree, and the chromatic index of $G$, respectively. We say $G$ is emph{$Delta$-critical} if $chi(G)=Delta(G)+1$ and $chi(H)le Delta(G)$ for eve ry proper subgraph $H$ of $G$; and $G$ is emph{overfull} if $|E(G)|>Delta lfloor |V(G)|/2 rfloor$. Since a maximum matching in $G$ can have size at most $lfloor |V(G)|/2 rfloor$, it follows that $chi(G) = Delta(G) +1$ if $G$ is overfull. Conversely, let $G$ be a $Delta$-critical graph. The well known overfull conjecture of Chetwynd and Hilton asserts that $G$ is overfull provided $Delta(G) > |V(G)|/3$. In this paper, we show that any $Delta$-critical graph $G$ is overfull if $Delta(G) - 7delta(G)/4ge(3|V(G)|-17)/4$.
122 - Jacob Fox , Yuval Wigderson 2021
The clique removal lemma says that for every $r geq 3$ and $varepsilon>0$, there exists some $delta>0$ so that every $n$-vertex graph $G$ with fewer than $delta n^r$ copies of $K_r$ can be made $K_r$-free by removing at most $varepsilon n^2$ edges. T he dependence of $delta$ on $varepsilon$ in this result is notoriously difficult to determine: it is known that $delta^{-1}$ must be at least super-polynomial in $varepsilon^{-1}$, and that it is at most of tower type in $log varepsilon^{-1}$. We prove that if one imposes an appropriate minimum degree condition on $G$, then one can actually take $delta$ to be a linear function of $varepsilon$ in the clique removal lemma. Moreover, we determine the threshold for such a minimum degree requirement, showing that above this threshold we have linear bounds, whereas below the threshold the bounds are once again super-polynomial, as in the unrestricted removal lemma. We also investigate this question for other graphs besides cliques, and prove some general results about how minimum degree conditions affect the bounds in the graph removal lemma.
The degree set of a finite simple graph $G$ is the set of distinct degrees of vertices of $G$. A theorem of Kapoor, Polimeni & Wall asserts that the least order of a graph with a given degree set $mathscr D$ is $1+max mathscr D$. Tripathi & Vijay con sidered the analogous problem concerning the least size of graphs with degree set $mathscr D$. We expand on their results, and determine the least size of graphs with degree set $mathscr D$ when (i) $min mathscr D mid d$ for each $d in mathscr D$; (ii) $min mathscr D=2$; (iii) $mathscr D={m,m+1,ldots,n}$. In addition, given any $mathscr D$, we produce a graph $G$ whose size is within $min mathscr D$ of the optimal size, giving a $big(1+frac{2}{d_1+1})$-approximation, where $d_1=max mathscr D$.
An edge-coloured graph $G$ is called $properly$ $connected$ if every two vertices are connected by a proper path. The $proper$ $connection$ $number$ of a connected graph $G$, denoted by $pc(G)$, is the smallest number of colours that are needed in or der to make $G$ properly connected. Susan A. van Aardt et al. gave a sufficient condition for the proper connection number to be at most $k$ in terms of the size of graphs. In this note, %optimizes the boundary of the number of edges %we study the $proper$ $connection$ $number$ is under the conditions of adding the minimum degree and optimizing the number of edges. our main result is the following, by adding a minimum degree condition: Let $G$ be a connected graph of order $n$, $kgeq3$. If $|E(G)|geq binom{n-m-(k+1-m)(delta+1)}{2} +(k+1-m)binom{delta+1}{2}+k+2$, then $pc(G)leq k$, where $m$ takes the value $t$ if $delta=1$ and $lfloor frac{k}{delta-1} rfloor$ if $deltageq2$. Furthermore, if $k=2$ and $delta=2$, %(i.e., $|E(G)|geq binom{n-5}{2} +7$) $pc(G)leq 2$, except $Gin {G_{1}, G_{n}}$ ($ngeq8$), where $G_{1}=K_{1}vee 3K_{2}$ and $G_{n}$ is obtained by taking a complete graph $K_{n-5}$ and $K_{1}vee (2K_{2}$) with an arbitrary vertex of $K_{n-5}$ and a vertex with $d(v)=4$ in $K_{1}vee (2K_{2}$) being joined. If $k=2$, $delta geq 3$, we conjecture $pc(G)leq 2$, where $m$ takes the value $1$ if $delta=3$ and $0$ if $deltageq4$ in the assumption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا