ﻻ يوجد ملخص باللغة العربية
The degree set of a finite simple graph $G$ is the set of distinct degrees of vertices of $G$. A theorem of Kapoor, Polimeni & Wall asserts that the least order of a graph with a given degree set $mathscr D$ is $1+max mathscr D$. Tripathi & Vijay considered the analogous problem concerning the least size of graphs with degree set $mathscr D$. We expand on their results, and determine the least size of graphs with degree set $mathscr D$ when (i) $min mathscr D mid d$ for each $d in mathscr D$; (ii) $min mathscr D=2$; (iii) $mathscr D={m,m+1,ldots,n}$. In addition, given any $mathscr D$, we produce a graph $G$ whose size is within $min mathscr D$ of the optimal size, giving a $big(1+frac{2}{d_1+1})$-approximation, where $d_1=max mathscr D$.
Motivated by work of ErdH{o}s, Ota determined the maximum size $g(n,k)$ of a $k$-connected nonhamiltonian graph of order $n$ in 1995. But for some pairs $n,k,$ the maximum size is not attained by a graph of connectivity $k.$ For example, $g(15,3)=77$
We study the $F$-decomposition threshold $delta_F$ for a given graph $F$. Here an $F$-decomposition of a graph $G$ is a collection of edge-disjoint copies of $F$ in $G$ which together cover every edge of $G$. (Such an $F$-decomposition can only exist
ErdH{o}s determined the maximum size of a nonhamiltonian graph of order $n$ and minimum degree at least $k$ in 1962. Recently, Ning and Peng generalized. ErdH{o}s work and gave the maximum size $h(n,c,k)$ of graphs with prescribed order $n$, circumfe
A signed graph is a pair $(G,Sigma)$, where $G=(V,E)$ is a graph (in which parallel edges and loops are permitted) with $V={1,ldots,n}$ and $Sigmasubseteq E$. The edges in $Sigma$ are called odd edges and the other edges of $E$ even. By $S(G,Sigma)$
Let $G$ be a simple graph with $ngeq4$ vertices and $d(x)+d(y)geq n+k$ for each edge $xyin E(G)$. In this work we prove that $G$ either contains a spanning closed trail containing any given edge set $X$ if $|X|leq k$, or $G$ is a well characterized g