ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear $0 u2beta$ decays in $B-L$ symmetric SUSY model and TeV scale left-right symmetric model

79   0   0.0 ( 0 )
 نشر من قبل Jin-Lei Yang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we take B-L supersymmetric standard model (B-LSSM) and TeV scale left-right symmetric model (LRSM) as two types of typical ones beyond SM to study the nuclear neutrinoless double beta decays ($0 u2beta$) and to see the senses for the present data and the expected data in the near future of the decays. In the study we pay much attention onto the QCD corrections in the energy-scale region from $mu=M_W$ to $musimeq 1.0;$GeV, but we treat the nuclear effects in the decays as done in the relevant literatures. For these two models the decay half-life of the nuclei, $^{76}$Ge and $^{136}$Xe, $T^{0 u}_{1/2}$($^{76}$Ge, $^{136}$Xe), are precisely estimated with the model parameters allowed by experiments and the results are presented properly. Results show that the concerned QCD corrections to the half-life of the $0 u2beta$ decays for the two models are quite sizable. The interference effects between the different contributions happened only in the model LRSM are specially analyzed. According to the numerical results, an optimistic conclusion is obtained that the $0 u2beta$ decays for the models may be observed in the next generation of the underground observations.

قيم البحث

اقرأ أيضاً

75 - K.S. Babu , Anil Thapa 2020
We develop a minimal left-right symmetric model based on the gauge group $SU(3)_C otimes SU(2)_L otimes SU(2)_R otimes U(1)_{B-L}$ wherein the Higgs triplets conventionally employed for symmetry breaking are replaced by Higgs doublets. Majorana masse s for the right-handed neutrinos $( u_R$) are induced via two-loop diagrams involving a charged scalar field $eta^+$. This setup is shown to provide excellent fits to neutrino oscillation data via the seesaw mechanism for the entire range of the $W_R^pm$ mass, from TeV to the GUT scale. When the $W_R^pm$ mass is at the TeV scale, the $ u_R$ masses turn out to be in the MeV range. We analyze constraints from low energy experiments, early universe cosmology and from supernova 1987a on such a scenario and show its consistency. We also study collider implications of a relatively light $eta^+$ scalar through its decay into multi-lepton final states and derive a lower limit of 390 GeV on its mass from the LHC, which can be improved to 555 GeV in its high luminosity run.
We study the effect of interference on the lepton number violating~(LNV) and lepton number conserving~(LNC) three-body meson decays $M_1^{+}to l_i^{+} l_j^{pm}pi^{mp}$, that arise in a TeV scale Left Right Symmetric model~(LRSM) with degenerate or ne arly degenerate right handed~(RH) neutrinos. LRSM contains three RH neutrinos and a RH gauge boson. The RH neutrinos with masses in the range of $M_N sim$ (MeV - few GeV) can give resonant enhancement in the semi-leptonic LNV and LNC meson decays. In the case, where only one RH neutrino contributes to these decays, the predicted new physics branching ratio of semi-leptonic LNV and LNC meson decays $M_1^{+}to l_i^{+} l_j^{+}pi^{-}$ and $M_1^{+}to l_i^{+} l_j^{-}pi^{+}$ are equal. We find that with at least two RH neutrinos contributing to the process, the LNV and LNC decay rates can differ. Depending on the neutrino mixing angles and $CP$ violating phases, the branching ratios of LNV and LNC decay channels mediated by the heavy neutrinos can be either enhanced or suppressed, and the ratio of these two rates can differ from unity.
We propose a low scale renormalizable left-right symmetric theory that successfully explains the observed SM fermion mass hierarchy, the tiny values for the light active neutrino masses, the lepton and baryon asymmetries of the Universe, as well as t he muon and electron anomalous magnetic moments. In the proposed model the top and exotic quarks obtain masses at tree level, whereas the masses of the bottom, charm and strange quarks, tau and muon leptons are generated from a tree level Universal Seesaw mechanism, thanks to their mixings with the charged exotic vector like fermions. The masses for the first generation SM charged fermions arise from a radiative seesaw mechanism at one loop level, mediated by charged vector like fermions and electrically neutral scalars. The light active neutrino masses are produced from a one-loop level inverse seesaw mechanism. Our model is also consistent with the experimental constraints arising from the Higgs diphoton decay rate. We also discuss the $Z^prime$ and heavy scalar production at a proton-proton collider.
We present a minimal left-right symmetric flavor model and analyze the predictions for the neutrino sector. In this scenario, the Yukawa sector is shaped by the dihedral $D_4$ symmetry which leads to correlations for the neutrino mixing parameters. W e end up with four possible solutions within this model. We further analyzed the impact of the upcoming long-baseline neutrino oscillation experiment DUNE. Due to its high sensitivity, DUNE will be able to rule out two of the solutions. Finally, the prediction for the neutrinoless double beta decay for the model has also been examined.
We present an implementation of the manifest left-right symmetric model in FeynRules. The different aspects of the model are briefly described alongside the corresponding elements of the model file. The model file is validated and can be easily trans lated to matrix element generators such as MadGraph5_aMC@NLO, CalcHEP, Sherpa, etc. The implementation of the left-right symmetric model is a useful step for studying new physics signals with the data generated at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا