ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effect of the Prior and the Experimental Design on the Inference of the Precision Matrix in Gaussian Chain Graph Models

336   0   0.0 ( 0 )
 نشر من قبل Yunyi Shen
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Here, we investigate whether (and how) experimental design could aid in the estimation of the precision matrix in a Gaussian chain graph model, especially the interplay between the design, the effect of the experiment and prior knowledge about the effect. We approximate the marginal posterior precision of the precision matrix via Laplace approximation under different priors: a flat prior, the conjugate prior Normal-Wishart, the unconfounded prior Normal-Matrix Generalized Inverse Gaussian (MGIG) and a general independent prior. We show that the approximated posterior precision is not a function of the design matrix for the cases of the Normal-Wishart and flat prior, but it is for the cases of the Normal-MGIG and the general independent prior. However, for the Normal-MGIG and the general independent prior, we find a sharp upper bound on the approximated posterior precision that does not involve the design matrix which translates into a bound on the information that could be extracted from a given experiment. We confirm the theoretical findings via a simulation study comparing the Steins loss difference between random versus no experiment (design matrix equal to zero). Our findings provide practical advice for domain scientists conducting experiments to decode the relationships between a multidimensional response and a set of predictors.

قيم البحث

اقرأ أيضاً

The Youden index is a popular summary statistic for receiver operating characteristic curve. It gives the optimal cutoff point of a biomarker to distinguish the diseased and healthy individuals. In this paper, we propose to model the distributions of a biomarker for individuals in the healthy and diseased groups via a semiparametric density ratio model. Based on this model, we use the maximum empirical likelihood method to estimate the Youden index and the optimal cutoff point. We further establish the asymptotic normality of the proposed estimators and construct valid confidence intervals for the Youden index and the corresponding optimal cutoff point. The proposed method automatically covers both cases when there is no lower limit of detection (LLOD) and when there is a fixed and finite LLOD for the biomarker. Extensive simulation studies and a real data example are used to illustrate the effectiveness of the proposed method and its advantages over the existing methods.
In the context of a high-dimensional linear regression model, we propose the use of an empirical correlation-adaptive prior that makes use of information in the observed predictor variable matrix to adaptively address high collinearity, determining i f parameters associated with correlated predictors should be shrunk together or kept apart. Under suitable conditions, we prove that this empirical Bayes posterior concentrates around the true sparse parameter at the optimal rate asymptotically. A simplified version of a shotgun stochastic search algorithm is employed to implement the variable selection procedure, and we show, via simulation experiments across different settings and a real-data application, the favorable performance of the proposed method compared to existing methods.
The notion of exchangeability has been recognized in the causal inference literature in various guises, but only rarely in the original Bayesian meaning as a symmetry property between individual units in statistical inference. Since the latter is a s tandard ingredient in Bayesian inference, we argue that in Bayesian causal inference it is natural to link the causal model, including the notion of confounding and definition of causal contrasts of interest, to the concept of exchangeability. Here we relate the Bayesian notion of exchangeability to alternative conditions for unconfounded inferences, commonly stated using potential outcomes, and define causal contrasts in the presence of exchangeability in terms of limits of posterior predictive expectations for further exchangeable units. While our main focus is in a point treatment setting, we also investigate how this reasoning carries over to longitudinal settings.
There is a wide range of applications where the local extrema of a function are the key quantity of interest. However, there is surprisingly little work on methods to infer local extrema with uncertainty quantification in the presence of noise. By vi ewing the function as an infinite-dimensional nuisance parameter, a semiparametric formulation of this problem poses daunting challenges, both methodologically and theoretically, as (i) the number of local extrema may be unknown, and (ii) the induced shape constraints associated with local extrema are highly irregular. In this article, we address these challenges by suggesting an encompassing strategy that eliminates the need to specify the number of local extrema, which leads to a remarkably simple, fast semiparametric Bayesian approach for inference on local extrema. We provide closed-form characterization of the posterior distribution and study its large sample behaviors under this encompassing regime. We show a multi-modal Bernstein-von Mises phenomenon in which the posterior measure converges to a mixture of Gaussians with the number of components matching the underlying truth, leading to posterior exploration that accounts for multi-modality. We illustrate the method through simulations and a real data application to event-related potential analysis.
Labeling patients in electronic health records with respect to their statuses of having a disease or condition, i.e. case or control statuses, has increasingly relied on prediction models using high-dimensional variables derived from structured and u nstructured electronic health record data. A major hurdle currently is a lack of valid statistical inference methods for the case probability. In this paper, considering high-dimensional sparse logistic regression models for prediction, we propose a novel bias-corrected estimator for the case probability through the development of linearization and variance enhancement techniques. We establish asymptotic normality of the proposed estimator for any loading vector in high dimensions. We construct a confidence interval for the case probability and propose a hypothesis testing procedure for patient case-control labelling. We demonstrate the proposed method via extensive simulation studies and application to real-world electronic health record data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا