ﻻ يوجد ملخص باللغة العربية
Modeling complex physical dynamics is a fundamental task in science and engineering. Traditional physics-based models are sample efficient, interpretable but often rely on rigid assumptions. Furthermore, direct numerical approximation is usually computationally intensive, requiring significant computational resources and expertise. While deep learning (DL) provides novel alternatives for efficiently recognizing complex patterns and emulating nonlinear dynamics, its predictions do not necessarily obey the governing laws of physical systems, nor do they generalize well across different systems. Thus, the study of physics-guided DL emerged and has gained great progress. Physics-guided DL aims to take the best from both physics-based modeling and state-of-the-art DL models to better solve scientific problems. In this paper, we provide a structured overview of existing methodologies of integrating prior physical knowledge or physics-based modeling into DL, with a special emphasis on learning dynamical systems. We also discuss the fundamental challenges and emerging opportunities in the area.
Spatio-temporal forecasting is of great importance in a wide range of dynamical systems applications from atmospheric science, to recent COVID-19 spread modeling. These applications rely on accurate predictions of spatio-temporal structured data refl
Solving power flow (PF) equations is the basis of power flow analysis, which is important in determining the best operation of existing systems, performing security analysis, etc. However, PF equations can be out-of-date or even unavailable due to sy
This digital book contains a practical and comprehensive introduction of everything related to deep learning in the context of physical simulations. As much as possible, all topics come with hands-on code examples in the form of Jupyter notebooks to
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcem
The study of human mobility is crucial due to its impact on several aspects of our society, such as disease spreading, urban planning, well-being, pollution, and more. The proliferation of digital mobility data, such as phone records, GPS traces, and