ﻻ يوجد ملخص باللغة العربية
Josephson junctions, in appropriate configurations, can be excellent candidates for detection of single photons in the microwave frequency band. Such possibility has been recently addressed in the framework of galactic axion detection. Here are reported recent developments in the modelling and simulation of dynamic behaviour of a Josephson junction single microwave photon detector. For a Josephson junction to be enough sensitive, small critical currents and operating temperatures of the order of ten of mK are necessary. Thermal and quantum tunnelling out of the zero-voltage state can also mask the detection process. Axion detection would require dark count rates in the order of 0.001 Hz. It is, therefore, is of paramount importance to identify proper device fabrication parameters and junction operation point.
We propose to use graphene-based Josephson junctions (gJjs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer gra
The Italian institute for nuclear physics (INFN) has financed the SIMP project (2019-2021) in order to strengthen its skills and technologies in the field of meV detectors with the ultimate aim of developing a single microwave photon detector. This g
Josephson junctions (JJs) are ubiquitous superconducting devices, enabling high sensitivity magnetometers and voltage amplifiers, as well as forming the basis of high performance cryogenic computer and superconducting quantum computers. While JJ perf
Sensitive microwave detectors are critical instruments in radioastronomy, dark matter axion searches, and superconducting quantum information science. The conventional strategy towards higher-sensitivity bolometry is to nanofabricate an ever-smaller
We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the $5 - 25$ GHz range ($sim20-100: mu$eV). The platform is small but fl