ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene-based Josephson junction microwave bolometer

80   0   0.0 ( 0 )
 نشر من قبل Kin Chung Fong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sensitive microwave detectors are critical instruments in radioastronomy, dark matter axion searches, and superconducting quantum information science. The conventional strategy towards higher-sensitivity bolometry is to nanofabricate an ever-smaller device to augment the thermal response. However, this direction is increasingly more difficult to obtain efficient photon coupling and maintain the material properties in a device with a large surface-to-volume ratio. Here we advance this concept to an ultimately thin bolometric sensor based on monolayer graphene. To utilize its minute electronic specific heat and thermal conductivity, we develop a superconductor-graphene-superconductor (SGS) Josephson junction bolometer embedded in a microwave resonator of resonant frequency 7.9 GHz with over 99% coupling efficiency. From the dependence of the Josephson switching current on the operating temperature, charge density, input power, and frequency, we demonstrate a noise equivalent power (NEP) of 7 $times 10^{-19}$ W/Hz$^{1/2}$, corresponding to an energy resolution of one single photon at 32 GHz and reaching the fundamental limit imposed by intrinsic thermal fluctuation at 0.19 K.

قيم البحث

اقرأ أيضاً

We propose to use graphene-based Josephson junctions (gJjs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer gra phene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high sensitivity photon detection required for research areas including quantum information processing and radio-astronomy. As an example, we present our device concepts for gJj single photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured gJj, demonstrating feasibility within existing technologies.
Gate-tunable Josephson junctions embedded in a microwave environment provide a promising platform to in-situ engineer and optimize novel superconducting quantum circuits. The key quantity for the circuit design is the phase-dependent complex admittan ce of the junction, which can be probed by sensing an rf SQUID with a tank circuit. Here, we investigate a graphene-based Josephson junction as a prototype gate-tunable element enclosed in a SQUID loop that is inductively coupled to a superconducting resonator operating at 3 GHz. With a concise circuit model that describes the dispersive and dissipative response of the coupled system, we extract the phase-dependent junction admittance corrected for self-screening of the SQUID loop. We decompose the admittance into the current-phase relation and the phase-dependent loss and as these quantities are dictated by the spectrum and population dynamics of the supercurrent-carrying Andreev bound states, we gain insight to the underlying microscopic transport mechanisms in the junction. We theoretically reproduce the experimental results by considering a short, diffusive junction model that takes into account the interaction between the Andreev spectrum and the electromagnetic environment, from which we deduce a lifetime of ~17 ps for non-equilibrium populations.
88 - D Alesini , D Babusci , C Barone 2021
Josephson junctions, in appropriate configurations, can be excellent candidates for detection of single photons in the microwave frequency band. Such possibility has been recently addressed in the framework of galactic axion detection. Here are repor ted recent developments in the modelling and simulation of dynamic behaviour of a Josephson junction single microwave photon detector. For a Josephson junction to be enough sensitive, small critical currents and operating temperatures of the order of ten of mK are necessary. Thermal and quantum tunnelling out of the zero-voltage state can also mask the detection process. Axion detection would require dark count rates in the order of 0.001 Hz. It is, therefore, is of paramount importance to identify proper device fabrication parameters and junction operation point.
Recent experiments on Josephson junction arrays (JJAs) in microwave cavities have opened up a new avenue for investigating the properties of these devices while minimising the amount of external noise coming from the measurement apparatus itself. The se experiments have already shown promise for probing many-body quantum effects in JJAs. In this work, we develop a general theoretical description of such experiments by deriving a quantum phase model for planar JJAs containing quantized vortices. The dynamical susceptibility of this model is calculated for some simple circuits, and signatures of the injection of additional vortices are identified. The effects of decoherence are considered via a Lindblad master equation.
We introduce a microwave bolometer aimed at high-quantum-efficiency detection of wave packet energy within the framework of circuit quantum electrodynamics, the ultimate goal being single microwave photon detection. We measure the differential therma l conductance between the detector and its heat bath, obtaining values as low as 5 fW/K at 50 mK. This is one tenth of the thermal conductance quantum and corresponds to a theoretical lower bound on noise-equivalent-power of order $10^{-20}$ $W/sqrt{mbox{Hz}}$ at 50 mK. By measuring the differential thermal conductance of the same bolometer design in qualitatively different environments and materials, we determine that electron--photon coupling dominates the thermalization of our nanobolometer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا