ﻻ يوجد ملخص باللغة العربية
The dynamics of an open quantum system with balanced gain and loss is not described by a PT-symmetric Hamiltonian but rather by Lindblad operators. Nevertheless the phenomenon of PT-symmetry breaking and the impact of exceptional points can be observed in the Lindbladean dynamics. Here we briefly review the development of PT symmetry in quantum mechanics, and the characterisation of PT-symmetry breaking in open quantum systems in terms of the behaviour of the speed of evolution of the state.
The space of density matrices is embedded in a Euclidean space to deduce the dynamical equation satisfied by the state of an open quantum system. The Euclidean norm is used to obtain an explicit expression for the speed of the evolution of the state.
The effect of PT-symmetry breaking in coupled systems with balanced gain and loss has recently attracted considerable attention and has been demonstrated in various photonic, electrical and mechanical systems in the classical regime. Here we generali
The aim of the paper is to study the question whether or not equilibrium states exist in open quantum systems that are embedded in at least two environments and are described by a non-Hermitian Hamilton operator $cal H$. The eigenfunctions of $cal H$
We present explicit evaluations of quantum speed limit times pertinent to the Markovian dynamics of an open continuous-variable system. Specifically, we consider the standard setting of a cavity mode of the quantum radiation field weakly coupled to a
General dynamic properties like controllability and simulability of spin systems, fermionic and bosonic systems are investigated in terms of symmetry. Symmetries may be due to the interaction topology or due to the structure and representation of the