ترغب بنشر مسار تعليمي؟ اضغط هنا

PT symmetry and the evolution speed in open quantum systems

158   0   0.0 ( 0 )
 نشر من قبل Dorje C. Brody Professor
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dorje C. Brody




اسأل ChatGPT حول البحث

The dynamics of an open quantum system with balanced gain and loss is not described by a PT-symmetric Hamiltonian but rather by Lindblad operators. Nevertheless the phenomenon of PT-symmetry breaking and the impact of exceptional points can be observed in the Lindbladean dynamics. Here we briefly review the development of PT symmetry in quantum mechanics, and the characterisation of PT-symmetry breaking in open quantum systems in terms of the behaviour of the speed of evolution of the state.

قيم البحث

اقرأ أيضاً

The space of density matrices is embedded in a Euclidean space to deduce the dynamical equation satisfied by the state of an open quantum system. The Euclidean norm is used to obtain an explicit expression for the speed of the evolution of the state. The unitary contribution to the evolution speed is given by the modified skew information of the Hamiltonian, while the radial component of the evolution speed, connected to the rate at which the purity of the state changes, is shown to be determined by the modified skew information of the Lindblad operators. An open-system analogue of the quantum navigation problem is posed, and a perturbative analysis is presented to identify the amount of change on the speed. Properties of the evolution speed are examined further through example systems, showing that the evolution speed need not be a decreasing function of time.
The effect of PT-symmetry breaking in coupled systems with balanced gain and loss has recently attracted considerable attention and has been demonstrated in various photonic, electrical and mechanical systems in the classical regime. Here we generali ze the definition of PT symmetry to finite-dimensional open quantum systems, which are described by a Markovian master equation. Specifically, we show that the invariance of this master equation under a certain symmetry transformation implies the existence of stationary states with preserved and broken parity symmetry. As the dimension of the Hilbert space grows, the transition between these two limiting phases becomes increasingly sharp and the classically expected PT-symmetry breaking transition is recovered. This quantum-to-classical correspondence allows us to establish a common theoretical framework to identify and accurately describe PT-symmetry breaking effects in a large variety of physical systems, operated both in the classical and quantum regimes.
149 - Ingrid Rotter 2018
The aim of the paper is to study the question whether or not equilibrium states exist in open quantum systems that are embedded in at least two environments and are described by a non-Hermitian Hamilton operator $cal H$. The eigenfunctions of $cal H$ contain the influence of exceptional points (EPs) as well as that of external mixing (EM) of the states via the environment. As a result, equilibrium states exist (far from EPs). They are different from those of the corresponding closed system. Their wavefunctions are orthogonal although the Hamiltonian is non-Hermitian.
We present explicit evaluations of quantum speed limit times pertinent to the Markovian dynamics of an open continuous-variable system. Specifically, we consider the standard setting of a cavity mode of the quantum radiation field weakly coupled to a thermal bosonic reservoir. The evolution of the field state is ruled by the quantum optical master equation, which is known to have an exact analytic solution. Starting from a pure input state, we employ two indicators of how different the initial and evolved states are, namely, the fidelity of evolution and the Hilbert-Schmidt distance of evolution. The former was introduced by del Campo {em et al.} who derived a time-independent speed limit for the evolution of a Markovian open system. We evaluate it for this field-reservoir setting, with an arbitrary input pure state of the field mode. The resultant formula is then specialized to the coherent and Fock states. On the other hand, we exploit an alternative approach that employs both indicators of evolution mentioned above. Their rates of change have the same upper bound, and consequently provide a unique time-dependent quantum speed limit. It turns out that the associate quantum speed limit time built with the Hilbert-Schmidt metric is tighter than the fidelity-based one. As apposite applications, we investigate the damping of the coherent and Fock states by using the characteristic functions of the corresponding evolved states. General expressions of both the fidelity and the Hilbert-Schmidt distance of evolution are obtained and analyzed for these two classes of input states. In the case of a coherent state, we derive accurate formulas for their common speed limit and the pair of associate limit times.
General dynamic properties like controllability and simulability of spin systems, fermionic and bosonic systems are investigated in terms of symmetry. Symmetries may be due to the interaction topology or due to the structure and representation of the system and control Hamiltonians. In either case, they obviously entail constants of motion. Conversely, the absence of symmetry implies irreducibility and provides a convenient necessary condition for full controllability much easier to assess than the well-established Lie-algebra rank condition. We give a complete lattice of irreducible simple subalgebras of su(2^n) for up to n=15 qubits. It complements the symmetry condition by allowing for easy tests solving homogeneous linear equations to filter irreducible unitary representations of other candidate algebras of classical type as well as of exceptional types. --- The lattice of irreducible simple subalgebras given also determines mutual simulability of dynamic systems of spin or fermionic or bosonic nature. We illustrate how controlled quadratic fermionic (and bosonic) systems can be simulated by spin systems and in certain cases also vice versa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا