ﻻ يوجد ملخص باللغة العربية
With the advantages of fast calculating speed and high precision, the physics-informed neural network method opens up a new approach for numerically solving nonlinear partial differential equations. Based on conserved quantities, we devise a two-stage PINN method which is tailored to the nature of equations by introducing features of physical systems into neural networks. Its remarkable advantage lies in that it can impose physical constraints from a global perspective. In stage one, the original PINN is applied. In stage two, we additionally introduce the measurement of conserved quantities into mean squared error loss to train neural networks. This two-stage PINN method is utilized to simulate abundant localized wave solutions of integrable equations. We mainly study the Sawada-Kotera equation as well as the coupled equations: the classical Boussinesq-Burgers equations and acquire the data-driven soliton molecule, M-shape double-peak soliton, plateau soliton, interaction solution, etc. Numerical results illustrate that abundant dynamic behaviors of these solutions can be well reproduced and the two-stage PINN method can remarkably improve prediction accuracy and enhance the ability of generalization compared to the original PINN method.
Physics Informed Neural Network (PINN) is a scientific computing framework used to solve both forward and inverse problems modeled by Partial Differential Equations (PDEs). This paper introduces IDRLnet, a Python toolbox for modeling and solving prob
The dynamical degenerate four-wave mixing is studied analytically in detail. By removing the unessential freedom, we first characterize this system by a lower-dimensional closed subsystem of a deformed Maxwell-Bloch type, involving only three physica
We propose a discretization-free approach based on the physics-informed neural network (PINN) method for solving coupled advection-dispersion and Darcy flow equations with space-dependent hydraulic conductivity. In this approach, the hydraulic conduc
Based on conservation laws as one of the important integrable properties of nonlinear physical models, we design a modified physics-informed neural network method based on the conservation law constraint. From a global perspective, this method impose
Physics-informed neural network (PINN) is a data-driven approach to solve equations. It is successful in many applications; however, the accuracy of the PINN is not satisfactory when it is used to solve multiscale equations. Homogenization is a w