ﻻ يوجد ملخص باللغة العربية
We propose {rm texttt{ResIST}}, a novel distributed training protocol for Residual Networks (ResNets). {rm texttt{ResIST}} randomly decomposes a global ResNet into several shallow sub-ResNets that are trained independently in a distributed manner for several local iterations, before having their updates synchronized and aggregated into the global model. In the next round, new sub-ResNets are randomly generated and the process repeats. By construction, per iteration, {rm texttt{ResIST}} communicates only a small portion of network parameters to each machine and never uses the full model during training. Thus, {rm texttt{ResIST}} reduces the communication, memory, and time requirements of ResNet training to only a fraction of the requirements of previous methods. In comparison to common protocols like data-parallel training and data-parallel training with local SGD, {rm texttt{ResIST}} yields a decrease in wall-clock training time, while being competitive with respect to model performance.
Many applications today, such as NLP, network analysis, and code analysis, rely on semantically embedding objects into low-dimensional fixed-length vectors. Such embeddings naturally provide a way to perform useful downstream tasks, such as identifyi
The graph convolutional network (GCN) is a go-to solution for machine learning on graphs, but its training is notoriously difficult to scale both in terms of graph size and the number of model parameters. Although some work has explored training on l
We present a novel global compression framework for deep neural networks that automatically analyzes each layer to identify the optimal per-layer compression ratio, while simultaneously achieving the desired overall compression. Our algorithm hinges
We propose NovoGrad, an adaptive stochastic gradient descent method with layer-wise gradient normalization and decoupled weight decay. In our experiments on neural networks for image classification, speech recognition, machine translation, and langua
Multimodal datasets contain an enormous amount of relational information, which grows exponentially with the introduction of new modalities. Learning representations in such a scenario is inherently complex due to the presence of multiple heterogeneo