ﻻ يوجد ملخص باللغة العربية
We study the mean properties of a large representative sample of 217 galaxies showing CIII] emission at $2<z<4$, selected from a parent sample of $sim$750 main-sequence star-forming galaxies in the VANDELS survey. These CIII] emitters have a broad range of UV luminosities, thus allowing a detailed stacking analysis to characterize their stellar mass, star formation rate (SFR) and stellar metallicity, as a function of the UV emission line ratios, EWs, and the carbon-to-oxygen (C/O) abundance ratio. Reliable CIII] detections represent $sim$30% of the parent sample. Extreme CIII] emitters (EW(CIII])$gtrsim$8r{A}) are exceedingly rare ($sim$3%) in VANDELS. The UV line ratios of the sample suggest no ionization source other than massive stars. Stacks with larger EW(CIII]) show larger EW(Ly$alpha$) and lower metallicity, but not all CIII] emitters are Ly$alpha$ emitters. The stellar metallicities of CIII] emitters are not significantly different from that of the parent sample, increasing from $sim$10% to $sim$40% solar for stellar masses $log$(M$_{star}$/M$_{odot})sim$9-10.5. The stellar mass-metallicity relation of the CIII] emitters is consistent with previous works showing strong evolution from $z=0$ to $zsim3$. The C/O abundances of the sample range 35%-150% solar, with a noticeable increase with FUV luminosity and a smooth decrease with the CIII] and Ly$alpha$ EWs. We discuss the CIII] emitters in the C/O-Fe/H and the C/O-O/H planes and find they follow stellar and nebular abundance trends consistent with those of Milky Way halo and thick disc stars and local HII galaxies, respectively. A qualitative agreement is also found with chemical evolution models, which suggests that CIII] emitters at $zsim$3 are experiencing an active phase of chemical enrichment.
We present the results of a new study of dust attenuation at redshifts $3 < z < 4$ based on a sample of $236$ star-forming galaxies from the VANDELS spectroscopic survey. Motivated by results from the First Billion Years (FiBY) simulation project, we
We present the results of a study utilising ultra-deep, rest-frame UV, spectroscopy to quantify the relationship between stellar mass and stellar metallicity for 681 star-forming galaxies at $2.5<z<5.0$ ($langle z rangle = 3.5 pm 0.6$) drawn from the
We use VANDELS spectroscopic data overlapping with the $simeq$7 Ms Chandra Deep Field South survey to extend studies of high-mass X-ray binary systems (XRBs) in 301 normal star-forming galaxies in the redshift range $3 < z < 5.5$. Our analysis evalua
Water ($rm H_{2}O$), one of the most ubiquitous molecules in the universe, has bright millimeter-wave emission lines easily observed at high-redshift with the current generation of instruments. The low excitation transition of $rm H_{2}O$, p$-$$rm H_
We present a Bayesian full-spectral-fitting analysis of 75 massive ($M_* > 10^{10.3} M_odot$) UVJ-selected galaxies at redshifts of $1.0 < z < 1.3$, combining extremely deep rest-frame ultraviolet spectroscopy from VANDELS with multi-wavelength photo