ترغب بنشر مسار تعليمي؟ اضغط هنا

The VANDELS Survey: New constraints on the high-mass X-ray binary populations in normal star-forming galaxies at 3 < z < 5.5

75   0   0.0 ( 0 )
 نشر من قبل Aayush Saxena
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use VANDELS spectroscopic data overlapping with the $simeq$7 Ms Chandra Deep Field South survey to extend studies of high-mass X-ray binary systems (XRBs) in 301 normal star-forming galaxies in the redshift range $3 < z < 5.5$. Our analysis evaluates correlations between X-ray luminosities ($L_X$), star formation rates (SFR) and stellar metallicities ($Z_star$) to higher redshifts and over a wider range in galaxy properties than hitherto. Using a stacking analysis performed in bins of both redshift and SFR for sources with robust spectroscopic redshifts without AGN signatures, we find convincing evolutionary trends in the ratio $L_X$/SFR to the highest redshifts probed, with a stronger trend for galaxies with lower SFRs. Combining our data with published samples at lower redshift, the evolution of $L_X$/SFR to $zsimeq5$ proceeds as $(1 + z)^{1.03 pm 0.02}$. Using stellar metallicities derived from photospheric absorption features in our spectroscopic data, we confirm indications at lower redshifts that $L_X$/SFR is stronger for metal-poor galaxies. We use semi-analytic models to show that metallicity dependence of $L_X$/SFR alone may not be sufficient to fully explain the observed redshift evolution of X-ray emission from high-mass XRBs, particularly for galaxies with SFR $<30$ $M_odot$ yr$^{-1}$. We speculate that the discrepancy may arise due to reduced overall stellar ages in the early Universe leading to higher $L_X$/SFR for the same metallicity. We use our data to define the redshift-dependent contribution of XRBs to the integrated X-ray luminosity density and, in comparison with models, find that the contribution of high-mass XRBs to the cosmic X-ray background at $z>6$ may be $gtrsim 0.25$ dex higher than previously estimated.



قيم البحث

اقرأ أيضاً

We present the results of a new study of dust attenuation at redshifts $3 < z < 4$ based on a sample of $236$ star-forming galaxies from the VANDELS spectroscopic survey. Motivated by results from the First Billion Years (FiBY) simulation project, we argue that the intrinsic spectral energy distributions (SEDs) of star-forming galaxies at these redshifts have a self-similar shape across the mass range $8.2 leq$ log$(M_{star}/M_{odot}) leq 10.6$ probed by our sample. Using FiBY data, we construct a set of intrinsic SED templates which incorporate both detailed star formation and chemical abundance histories, and a variety of stellar population synthesis (SPS) model assumptions. With this set of intrinsic SEDs, we present a novel approach for directly recovering the shape and normalization of the dust attenuation curve. We find, across all of the intrinsic templates considered, that the average attenuation curve for star-forming galaxies at $zsimeq3.5$ is similar in shape to the commonly-adopted Calzetti starburst law, with an average total-to-selective attenuation ratio of $R_{V}=4.18pm0.29$. We show that the optical attenuation ($A_V$) versus stellar mass ($M_{star}$) relation predicted using our method is consistent with recent ALMA observations of galaxies at $2<z<3$ in the emph{Hubble} emph{Ultra} emph{Deep} emph{Field} (HUDF), as well as empirical $A_V - M_{star}$ relations predicted by a Calzetti-like law. Our results, combined with other literature data, suggest that the $A_V - M_{star}$ relation does not evolve over the redshift range $0<z<5$, at least for galaxies with log$(M_{star}/M_{odot}) gtrsim 9.5$. Finally, we present tentative evidence which suggests that the attenuation curve may become steeper at log$(M_{star}/M_{odot}) lesssim 9.0$.
We present the results of a study utilising ultra-deep, rest-frame UV, spectroscopy to quantify the relationship between stellar mass and stellar metallicity for 681 star-forming galaxies at $2.5<z<5.0$ ($langle z rangle = 3.5 pm 0.6$) drawn from the VANDELS survey. Via a comparison with high-resolution stellar population models, we determine stellar metallicities for a set of composite spectra formed from subsamples selected by mass and redshift. Across the stellar mass range $8.5 < mathrm{log}(langle M_{ast} rangle/rm{M}_{odot}) < 10.2$ we find a strong correlation between stellar metallicity and stellar mass, with stellar metallicity monotonically increasing from $Z_{ast}/mathrm{Z}_{odot} < 0.09$ at $langle M_{ast} rangle = 3.2 times 10^{8} rm{M}_{odot}$ to $Z_{ast}/Z_{odot} = 0.27$ at $langle M_{ast} rangle = 1.7 times 10^{10} rm{M}_{odot}$. In contrast, at a given stellar mass, we find no evidence for significant metallicity evolution across the redshift range of our sample. However, comparing our results to the $z=0$ stellar mass-metallicity relation, we find that the $langle z rangle = 3.5$ relation is consistent with being shifted to lower metallicities by $simeq 0.6$ dex. Contrasting our derived stellar metallicities with estimates of gas-phase metallicities at similar redshifts, we find evidence for enhanced $rm{O}/rm{Fe}$ ratios of the order (O/Fe) $gtrsim 1.8$ $times$ (O/Fe)$_{odot}$. Finally, by comparing our results to simulation predictions, we find that the $langle z rangle = 3.5$ stellar mass-metallicity relation is consistent with current predictions for how outflow strength scales with galaxy mass. This conclusion is supported by an analysis of analytic models, and suggests that the mass loading parameter ($eta=dot{M}_{mathrm{outflow}}/M_{ast}$) scales as $eta propto M_{ast}^{beta}$ with $beta simeq -0.4$.
We study the mean properties of a large representative sample of 217 galaxies showing CIII] emission at $2<z<4$, selected from a parent sample of $sim$750 main-sequence star-forming galaxies in the VANDELS survey. These CIII] emitters have a broad ra nge of UV luminosities, thus allowing a detailed stacking analysis to characterize their stellar mass, star formation rate (SFR) and stellar metallicity, as a function of the UV emission line ratios, EWs, and the carbon-to-oxygen (C/O) abundance ratio. Reliable CIII] detections represent $sim$30% of the parent sample. Extreme CIII] emitters (EW(CIII])$gtrsim$8r{A}) are exceedingly rare ($sim$3%) in VANDELS. The UV line ratios of the sample suggest no ionization source other than massive stars. Stacks with larger EW(CIII]) show larger EW(Ly$alpha$) and lower metallicity, but not all CIII] emitters are Ly$alpha$ emitters. The stellar metallicities of CIII] emitters are not significantly different from that of the parent sample, increasing from $sim$10% to $sim$40% solar for stellar masses $log$(M$_{star}$/M$_{odot})sim$9-10.5. The stellar mass-metallicity relation of the CIII] emitters is consistent with previous works showing strong evolution from $z=0$ to $zsim3$. The C/O abundances of the sample range 35%-150% solar, with a noticeable increase with FUV luminosity and a smooth decrease with the CIII] and Ly$alpha$ EWs. We discuss the CIII] emitters in the C/O-Fe/H and the C/O-O/H planes and find they follow stellar and nebular abundance trends consistent with those of Milky Way halo and thick disc stars and local HII galaxies, respectively. A qualitative agreement is also found with chemical evolution models, which suggests that CIII] emitters at $zsim$3 are experiencing an active phase of chemical enrichment.
66 - A. Hoag , T. Treu , L. Pentericci 2019
We constrain the distribution of spatially offset Lyman-alpha emission (Ly$alpha$) relative to rest-frame ultraviolet emission in $sim300$ high redshift ($3<z<5.5$) Lyman-break galaxies (LBGs) exhibiting Ly$alpha$ emission from VANDELS, a VLT/VIMOS s lit-spectroscopic survey of the CANDELS Ultra Deep Survey and Chandra Deep Field South fields (${simeq0.2}~mathrm{deg}^2$ total). Because slit spectroscopy compresses two-dimensional spatial information into one spatial dimension, we use Bayesian inference to recover the underlying Ly$alpha$ spatial offset distribution. We model the distribution using a 2D circular Gaussian, defined by a single parameter $sigma_{r,mathrm{Ly}alpha}$, the standard deviation expressed in polar coordinates. Over the entire redshift range of our sample ($3<z<5.5$), we find $sigma_{r,mathrm{Ly}alpha}=1.70^{+0.09}_{-0.08}$ kpc ($68%$ conf.), corresponding to $sim0.25$ arcsec at $langle zrangle=4.5$. We also find that $sigma_{r,mathrm{Ly}alpha}$ decreases significantly with redshift. Because Ly$alpha$ spatial offsets can cause slit-losses, the decrease in $sigma_{r,mathrm{Ly}alpha}$ with redshift can partially explain the increase in the fraction of Ly$alpha$ emitters observed in the literature over this same interval, although uncertainties are still too large to reach a strong conclusion. If $sigma_{r,mathrm{Ly}alpha}$ continues to decrease into the reionization epoch, then the decrease in Ly$alpha$ transmission from galaxies observed during this epoch might require an even higher neutral hydrogen fraction than what is currently inferred. Conversely, if spatial offsets increase with the increasing opacity of the IGM, slit losses may explain some of the drop in Ly$alpha$ transmission observed at $z>6$. Spatially resolved observations of Ly$alpha$ and UV continuum at $6<z<8$ are needed to settle the issue.
The infrared spectral energy distributions (SEDs) of main-sequence galaxies in the early universe (z > 4) is currently unconstrained as infrared continuum observations are time consuming and not feasible for large samples. We present Atacama Large Mi llimetre Array (ALMA) Band 8 observations of four main-sequence galaxies at z ~ 5.5 to study their infrared SED shape in detail. Our continuum data (rest-frame 110$rm mu m$, close to the peak of infrared emission) allows us to constrain luminosity weighted dust temperatures and total infrared luminosities. With data at longer wavelengths, we measure for the first time the emissivity index at these redshifts to provide more robust estimates of molecular gas masses based on dust continuum. The Band 8 observations of three out of four galaxies can only be reconciled with optically thin emission redward of rest-frame 100$rm mu m$. The derived dust peak temperatures at z ~ 5.5 (38$pm$8K) are elevated compared to average local galaxies, however, 5-10K below what would be predicted from an extrapolation of the trend at $z<4$. This behaviour can be explained by decreasing dust abundance (or density) towards high redshifts, which would cause the infrared SED at the peak to be more optically thin, making hot dust more visible to the external observer. From the 850$rm mu m$ dust continuum, we derive molecular gas masses between $10^{10}$ and $10^{11},{rm M_{odot}}$ and gas fractions (gas over total mass) of 30-80% (gas depletion times of 100-220Myrs). All in all, our results provide a first measured benchmark SED to interpret future millimetre observations of normal, main-sequence galaxies in the early Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا