ترغب بنشر مسار تعليمي؟ اضغط هنا

Dopant-segregation to grain boundaries controls electrical conductivity of n-type NbCo(Pt)Sn half-Heusler alloy mediating thermoelectric performance

85   0   0.0 ( 0 )
 نشر من قبل Baptiste Gault
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Science-driven design of future thermoelectric materials requires a deep understanding of the fundamental relationships between microstructure and transport properties. Grain boundaries in polycrystalline materials influence the thermoelectric performance through the scattering of phonons or the trapping of electrons due to space-charge effects. Yet, the current lack of careful investigations on grain boundary-associated features hinders further optimization of properties. Here, we study n-type NbCo1-xPtxSn half-Heusler alloys, which were synthesized by ball milling and spark plasma sintering (SPS). Post-SPS annealing was performed on one sample, leading to improved low-temperature electrical conductivity. The microstructure of both samples was examined by electron microscopy and atom probe tomography. The grain size increases from ~230 nm to ~2.38 {mu}m upon annealing. Pt is found within grains and at grain boundaries, where it locally reduces the resistivity, as assessed by in situ four-point-probe electrical conductivity measurement. Our work showcases the correlation between microstructure and electrical conductivity, providing opportunities for future microstructural optimization by tuning the chemical composition at grain boundaries.

قيم البحث

اقرأ أيضاً

Half-Heusler compounds usually exhibit relatively higher lattice thermal conductivity that is undesirable for thermoelectric applications. Here we demonstrate by first-principles calculations and Boltzmann transport theory that the BiBaK system is an exception, which has rather low thermal conductivity as evidenced by very small phonon group velocity and relaxation time. Detailed analysis indicates that the heavy Bi and Ba atoms form a cage-like structure, inside which the light K atom rattles with larger atomic displacement parameters. In combination with its good electronic transport properties, the BiBaK shows a maximum n-type ZT value of 1.9 at 900 K, which outperforms most half-Heusler thermoelectric materials.
90 - Q. Y. Xue , H. J. Liu , D. D. Fan 2016
The electronic and transport properties of the half-Heusler compound LaPtSb are investigated by performing first-principles calculations combined with semi-classical Boltzmann theory and deformation potential theory. Compared with many typical half-H eusler compounds, the LaPtSb exhibits obviously larger power factor at room temperature, especially for the n-type system. Together with the very low lattice thermal conductivity, the thermoelectric figure of merit (ZT) of LaPtSb can be optimized to a record high value of 2.2 by fine tuning the carrier concentration.
We report $^{59}$Co, $^{93}$Nb, and $^{121}$Sb nuclear magnetic resonance (NMR) measurements combined with density functional theory (DFT) calculations on a series of half-Heusler semiconductors, including NbCoSn, ZrCoSb, TaFeSb and NbFeSb, to better understand their electronic properties and general composition-dependent trends. These materials are of interest as potentially high efficiency thermoelectric materials. Compared to the other materials, we find that ZrCoSb tends to have a relatively large amount of local disorder, apparently antisite defects. This contributes to a small excitation gap corresponding to an impurity band near the band edge. In NbCoSn and TaFeSb, Curie-Weiss-type behavior is revealed, which indicates a small density of interacting paramagnetic defects. Very large paramagnetic chemical shifts are observed associated with a Van Vleck mechanism due to closely spaced $d$ bands splitting between the conduction and valence bands. Meanwhile, DFT methods were generally successful in reproducing the chemical shift trend for these half-Heusler materials, and we identify an enhancement of the larger-magnitude shifts, which we connect to electron interaction effects. The general trend is connected to changes in $d$-electron hybridization across the series.
A half-Heusler material FeNb$_{0.8}$Ti$_{0.2}$Sb has been identified as a promising thermoelectric material due to its excellent thermoelectric performance at high temperatures. The origins of the efficient thermoelectric performance are investigated through a series of low-temperature (2 - 400 K) measurements. The high data coherence of the low and high temperatures is observed. An optimal and nearly temperature-independent carrier concentration is identified, which is ideal for the power factor. The obtained single type of hole carrier is also beneficial to the large Seebeck coefficient. The electronic thermal conductivity is found to be comparable to the lattice thermal conductivity and becomes the dominant component above 200 K. These findings again indicate that electron scattering plays a key role in the electrical and thermal transport properties. The dimensionless figure of merit is thus mainly governed by the electronic properties. These effects obtained at low temperatures with the avoidance of possible thermal fluctuations together offer the physical origin for the excellent thermoelectric performance in this material.
We propose a ferromagnetic Heusler alloy that can switch between a metal and a half-metal. Thiseffect can provide tunable spintronics properties. Using the density functional theory (DFT) withreliable implementations of the electron correlation effec ts, we find Mn2ScSi total energy curvesconsisting of distinct branches with a very small energy difference. The phase at low lattice crystalvolume is a low magnetic half-metallic state while the phase at high lattice crystal volume is a highmagnetic metallic state. We suggest that the transition between half-metallic and metallic statescan be triggered by a triaxial contraction/expansion of the crystal lattice or by an external magneticfield if we assume that the lattice is cubic and remains cubic under expansion/contraction. However,the phase at high volume can also undergo an austenite-martensite phase transition because of thepresence of Jahn-Teller active3delectrons on the Mn atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا