ﻻ يوجد ملخص باللغة العربية
Half-Heusler compounds usually exhibit relatively higher lattice thermal conductivity that is undesirable for thermoelectric applications. Here we demonstrate by first-principles calculations and Boltzmann transport theory that the BiBaK system is an exception, which has rather low thermal conductivity as evidenced by very small phonon group velocity and relaxation time. Detailed analysis indicates that the heavy Bi and Ba atoms form a cage-like structure, inside which the light K atom rattles with larger atomic displacement parameters. In combination with its good electronic transport properties, the BiBaK shows a maximum n-type ZT value of 1.9 at 900 K, which outperforms most half-Heusler thermoelectric materials.
The electronic and transport properties of the half-Heusler compound LaPtSb are investigated by performing first-principles calculations combined with semi-classical Boltzmann theory and deformation potential theory. Compared with many typical half-H
Since their discovery around a century ago, the structure and chemistry of the multi-functional half-Heusler semiconductors have been studied extensively as three component systems. The elemental groups constituting these ternary compounds with the n
We explore the structural, electronic, mechanical and thermoelectric properties of a new half Heusler compound, HfPtPb which is all metallic heavy element and has been recently been proposed to be stable [Nature Chem 7 (2015) 308]. In the present wor
The half-Heusler compound has drawn attention in a variety of fields as a candidate material for thermoelectric energy conversion and spintronics technology. This is because it has various electronic structures, such as semi-metals, semiconductors, a
Tin chalcogenides (SnS, SnSe, and SnTe) are found to have improved thermoelectric properties upon the reduction of their dimensionality. Here we found the tilted AA + s stacked two-dimensional (2D) SnTe bilayer as the most stable phase among several