ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Analysis of Chemical Reaction Networks Dynamics based on Input-Output Monotonicity

51   0   0.0 ( 0 )
 نشر من قبل Lucia Nasti
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivation: A Chemical Reaction Network (CRN) is a set of chemical reactions, which can be very complex and difficult to analyze. Indeed, dynamical properties of CRNs can be described by a set of non-linear differential equations that rarely can be solved in closed-form, but that can instead be used to reason on the system dynamics. In this context, one of the possible approaches is to perform numerical simulations, which may require a high computational effort. In particular, in order to investigate some dynamical properties, such as robustness or global sensitivity, many simulations have to be performed by varying the initial concentration of chemical species. Results: In order to reduce the computational effort required when many simulations are needed to assess a property, we exploit a new notion of monotonicity of the output of the system (the concentration of a target chemical species at the steady-state) with respect to the input (the initial concentration of another chemical species). To assess such monotonicity behavior, we propose a new graphical approach that allows us to state sufficient conditions for ensuring that the monotonicity property holds. Our sufficient conditions allow us to efficiently verify the monotonicity property by exploring a graph constructed on the basis of the reactions involved in the network. Once established, our monotonicity property allows us to drastically reduce the number of simulations required to assess some dynamical properties of the CRN.

قيم البحث

اقرأ أيضاً

Over the last years, analyses performed on a stochastic model of catalytic reaction networks have provided some indications about the reasons why wet-lab experiments hardly ever comply with the phase transition typically predicted by theoretical mode ls with regard to the emergence of collectively self-replicating sets of molecule (also defined as autocatalytic sets, ACSs), a phenomenon that is often observed in nature and that is supposed to have played a major role in the emergence of the primitive forms of life. The model at issue has allowed to reveal that the emerging ACSs are characterized by a general dynamical fragility, which might explain the difficulty to observe them in lab experiments. In this work, the main results of the various analyses are reviewed, with particular regard to the factors able to affect the generic properties of catalytic reactions network, for what concerns, not only the probability of ACSs to be observed, but also the overall activity of the system, in terms of production of new species, reactions and matter.
Recent developments surrounding resource theories have shown that any quantum state or measurement resource, with respect to a convex (and compact) set of resourceless objects, provides an advantage in a tailored subchannel or state discrimination ta sk, respectively. Here we show that an analogous, more general result is also true in the case of dynamical quantum resources, i.e., channels and instruments. In the scenario we consider, the tasks associated to a resource are input-output games. The advantage a resource provides in these games is naturally quantified by a generalized robustness measure. We illustrate our approach by applying it to a broad collection of examples, including classical and measure-and-prepare channels, measurement and channel incompatibility, LOCC operations, and steering, as well as discussing its applicability to other resources in, e.g., quantum thermodynamics. We finish by showing that our approach generalizes to higher-order dynamics where it can be used, for example, to witness causal properties of supermaps.
This paper presents a systematic method to analyze stability and robustness of uncertain Quantum Input-Output Networks (QIONs). A general form of uncertainty is introduced into quantum networks in the SLH formalism. Results of this paper are built up on the notion of uncertainty decomposition wherein the quantum network is decomposed into nominal (certain) and uncertain sub-networks in cascade connection. Sufficient conditions for robust stability are derived using two different methods. In the first approach, a generalized small-gain theorem is presented and in the second approach, robust stability is analyzed within the framework of Lyapunov theory. In the second method, the robust stability problem is reformulated as feasibility of a Linear Matrix Inequality (LMI), which can be examined using the well-established systematic methods in the literature.
84 - Roberto Serra 2013
In this work we introduce some preliminary analyses on the role of a semi-permeable membrane in the dynamics of a stochastic model of catalytic reaction sets (CRSs) of molecules. The results of the simulations performed on ensembles of randomly gener ated reaction schemes highlight remarkable differences between this very simple protocell description model and the classical case of the continuous stirred-tank reactor (CSTR). In particular, in the CSTR case, distinct simulations with the same reaction scheme reach the same dynamical equilibrium, whereas, in the protocell case, simulations with identical reaction schemes can reach very different dynamical states, despite starting from the same initial conditions.
Input-output analysis of transitional channel flows has proven to be a valuable analytical tool for identifying important flow structures and energetic motions. The traditional approach abstracts the nonlinear terms as forcing that is unstructured, i n the sense that this forcing is not directly tied to the underlying nonlinearity in the dynamics. This paper instead employs a structured singular value-based approach that preserves certain input-output properties of the nonlinear forcing function in an effort to recover the larger range of key flow features identified through nonlinear analysis, experiments, and direct numerical simulation (DNS) of transitional channel flows. Application of this method to transitional plane Couette and plane Poiseuille flows leads to not only the identification of the streamwise coherent structures predicted through traditional input-output approaches, but also the characterization of the oblique flow structures as those requiring the least energy to induce transition in agreement with DNS studies, and nonlinear optimal perturbation analysis. The proposed approach also captures the recently observed oblique turbulent bands that have been linked to transition in experiments and DNS with very large channel size. The ability to identify the larger amplification of the streamwise varying structures predicted from DNS and nonlinear analysis in both flow regimes suggests that the structured approach allows one to maintain the nonlinear effects associated with weakening of the lift-up mechanism, which is known to dominate the linear operator. Capturing this key nonlinear effect enables the prediction of the wider range of known transitional flow structures within the analytical input-output modeling paradigm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا