ترغب بنشر مسار تعليمي؟ اضغط هنا

A model of protocell based on the introduction of a semi-permeable membrane in a stochastic model of catalytic reaction networks

84   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2013
والبحث باللغة English
 تأليف Roberto Serra




اسأل ChatGPT حول البحث

In this work we introduce some preliminary analyses on the role of a semi-permeable membrane in the dynamics of a stochastic model of catalytic reaction sets (CRSs) of molecules. The results of the simulations performed on ensembles of randomly generated reaction schemes highlight remarkable differences between this very simple protocell description model and the classical case of the continuous stirred-tank reactor (CSTR). In particular, in the CSTR case, distinct simulations with the same reaction scheme reach the same dynamical equilibrium, whereas, in the protocell case, simulations with identical reaction schemes can reach very different dynamical states, despite starting from the same initial conditions.

قيم البحث

اقرأ أيضاً

Over the last years, analyses performed on a stochastic model of catalytic reaction networks have provided some indications about the reasons why wet-lab experiments hardly ever comply with the phase transition typically predicted by theoretical mode ls with regard to the emergence of collectively self-replicating sets of molecule (also defined as autocatalytic sets, ACSs), a phenomenon that is often observed in nature and that is supposed to have played a major role in the emergence of the primitive forms of life. The model at issue has allowed to reveal that the emerging ACSs are characterized by a general dynamical fragility, which might explain the difficulty to observe them in lab experiments. In this work, the main results of the various analyses are reviewed, with particular regard to the factors able to affect the generic properties of catalytic reactions network, for what concerns, not only the probability of ACSs to be observed, but also the overall activity of the system, in terms of production of new species, reactions and matter.
Deficiency zero is an important network structure and has been the focus of many celebrated results within reaction network theory. In our previous paper textit{Prevalence of deficiency zero reaction networks in an ErdH os-Renyi framework}, we provid ed a framework to quantify the prevalence of deficiency zero among randomly generated reaction networks. Specifically, given a randomly generated binary reaction network with $n$ species, with an edge between two arbitrary vertices occurring independently with probability $p_n$, we established the threshold function $r(n)=frac{1}{n^3}$ such that the probability of the random network being deficiency zero converges to 1 if $frac{p_n}{r(n)}to 0$ and converges to 0 if $frac{p_n}{r(n)}toinfty$, as $n to infty$. With the base ErdH os-Renyi framework as a starting point, the current paper provides a significantly more flexible framework by weighting the edge probabilities via control parameters $alpha_{i,j}$, with $i,jin {0,1,2}$ enumerating the types of possible vertices (zeroth, first, or second order). The control parameters can be chosen to generate random reaction networks with a specific underlying structure, such as closed networks with very few inflow and outflow reactions, or open networks with abundant inflow and outflow. Under this new framework, for each choice of control parameters ${alpha_{i,j}}$, we establish a threshold function $r(n,{alpha_{i,j}})$ such that the probability of the random network being deficiency zero converges to 1 if $frac{p_n}{r(n,{alpha_{i,j}})}to 0$ and converges to 0 if $frac{p_n}{r(n,{alpha_{i,j}})}to infty$.
We describe three independent implementations of a new agent-based model (ABM) that simulates a contemporary sports-betting exchange, such as those offered commercially by companies including Betfair, Smarkets, and Betdaq. The motivation for construc ting this ABM, which is known as the Bristol Betting Exchange (BBE), is so that it can serve as a synthetic data generator, producing large volumes of data that can be used to develop and test new betting strategies via advanced data analytics and machine learning techniques. Betting exchanges act as online platforms on which bettors can find willing counterparties to a bet, and they do this in a way that is directly comparable to the manner in which electronic financial exchanges, such as major stock markets, act as platforms that allow traders to find willing counterparties to buy from or sell to: the platform aggregates and anonymises orders from multiple participants, showing a summary of the market that is updated in real-time. In the first instance, BBE is aimed primarily at producing synthetic data for in-play betting (also known as in-race or in-game betting) where bettors can place bets on the outcome of a track-race event, such as a horse race, after the race has started and for as long as the race is underway, with betting only ceasing when the race ends. The rationale for, and design of, BBE has been described in detail in a previous paper that we summarise here, before discussing our comparative results which contrast a single-threaded implementation in Python, a multi-threaded implementation in Python, and an implementation where Python header-code calls simulations of the track-racing events written in OpenCL that execute on a 640-core GPU -- this runs approximately 1000 times faster than the single-threaded Python. Our source-code for BBE is freely available on GitHub.
166 - Jingwen Zhang , Defu Yang , Wei He 2020
Currently, many studies of Alzheimers disease (AD) are investigating the neurobiological factors behind the acquisition of beta-amyloid (A), pathologic tau (T), and neurodegeneration ([N]) biomarkers from neuroimages. However, a system-level mechanis m of how these neuropathological burdens promote neurodegeneration and why AD exhibits characteristic progression is largely elusive. In this study, we combined the power of systems biology and network neuroscience to understand the dynamic interaction and diffusion process of AT[N] biomarkers from an unprecedented amount of longitudinal Amyloid PET scan, MRI imaging, and DTI data. Specifically, we developed a network-guided biochemical model to jointly (1) model the interaction of AT[N] biomarkers at each brain region and (2) characterize their propagation pattern across the fiber pathways in the structural brain network, where the brain resilience is also considered as a moderator of cognitive decline. Our biochemical model offers a greater mathematical insight to understand the physiopathological mechanism of AD progression by studying the system dynamics and stability. Thus, an in-depth system-level analysis allows us to gain a new understanding of how AT[N] biomarkers spread throughout the brain, capture the early sign of cognitive decline, and predict the AD progression from the preclinical stage.
Complexes of physically interacting proteins are one of the fundamental functional units responsible for driving key biological mechanisms within the cell. Their identification is therefore necessary not only to understand complex formation but also the higher level organization of the cell. With the advent of high-throughput techniques in molecular biology, significant amount of physical interaction data has been cataloged from organisms such as yeast, which has in turn fueled computational approaches to systematically mine complexes from the network of physical interactions among proteins (PPI network). In this survey, we review, classify and evaluate some of the key computational methods developed till date for the identification of protein complexes from PPI networks. We present two insightful taxonomies that reflect how these methods have evolved over the years towards improving automated complex prediction. We also discuss some open challenges facing accurate reconstruction of complexes, the crucial ones being presence of high proportion of errors and noise in current high-throughput datasets and some key aspects overlooked by current complex detection methods. We hope this review will not only help to condense the history of computational complex detection for easy reference, but also provide valuable insights to drive further research in this area.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا