ﻻ يوجد ملخص باللغة العربية
The origin of magnetic fields in the Universe is an open problem. Seed magnetic fields possibly produced in early times may have survived up to the present day close to their original form, providing an untapped window to the primeval Universe. The recent observations of high-energy neutrinos from the blazar TXS 0506+056 in association with an electromagnetic counterpart in a broad range of wavelengths can be used to probe intrinsic properties of this object and the traversed medium. Here we show that intergalactic magnetic fields (IGMFs) can affect the intrinsic spectral properties of this object reconstructed from observations. In particular, we point out that the reconstructed maximum gamma-ray energy of TXS 0506+056 can be significantly higher if IGMFs are strong. Finally, we use this flare to constrain both the magnetic-field strength and the coherence length of IGMFs.
Intergalactic magnetic fields (IGMF) can cause the appearance of halos around the gamma-ray images of distant objects because an electromagnetic cascade initiated by a high-energy gamma-ray interaction with the photon background is broadened by magne
We study the generation of intergalactic magnetic fields in two models for first-order phase transitions in the early Universe that have been studied previously in connection with the generation of gravitational waves (GWs): the Standard Model supple
Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated, suggesting that clusters may also be sources of very high-energy (VHE; E>100 GeV) gamma-ray emission. We repor
Giant radio galaxies (GRGs) are physically large radio sources that extend well beyond their host galaxy environment. Their polarization properties are affected by the poorly constrained magnetic field that permeates the intergalactic medium on Mpc s
Recent rapid progress in multimessenger observations of neutron stars (NSs) offers great potential to constrain the properties of strongly interacting matter under the most extreme conditions. In order to fully exploit the current observational input