ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Minimize Age of Information over an Unreliable Channel with Energy Harvesting

203   0   0.0 ( 0 )
 نشر من قبل Elif Tugce Ceran
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The time average expected age of information (AoI) is studied for status updates sent over an error-prone channel from an energy-harvesting transmitter with a finite-capacity battery. Energy cost of sensing new status updates is taken into account as well as the transmission energy cost better capturing practical systems. The optimal scheduling policy is first studied under the hybrid automatic repeat request (HARQ) protocol when the channel and energy harvesting statistics are known, and the existence of a threshold-based optimal policy is shown. For the case of unknown environments, average-cost reinforcement-learning algorithms are proposed that learn the system parameters and the status update policy in real-time. The effectiveness of the proposed methods is demonstrated through numerical results.



قيم البحث

اقرأ أيضاً

Age of Incorrect Information (AoII) is a newly introduced performance metric that considers communication goals. Therefore, comparing with traditional performance metrics and the recently introduced metric - Age of Information (AoI), AoII achieves be tter performance in many real-life applications. However, the fundamental nature of AoII has been elusive so far. In this paper, we consider the AoII in a system where a transmitter sends updates about a multi-state Markovian source to a remote receiver through an unreliable channel. The communication goal is to minimize AoII subject to a power constraint. We cast the problem into a Constrained Markov Decision Process (CMDP) and prove that the optimal policy is a mixture of two deterministic threshold policies. Afterward, by leveraging the notion of Relative Value Iteration (RVI) and the structural properties of threshold policy, we propose an efficient algorithm to find the threshold policies as well as the mixing coefficient. Lastly, numerical results are laid out to highlight the performance of AoII-optimal policy.
Age of Information (AoI) is a newly appeared concept and metric to characterize the freshness of data. In this work, we study the delay and AoI in a multiple access channel (MAC) with two source nodes transmitting different types of data to a common destination. The first node is grid-connected and its data packets arrive in a bursty manner, and at each time slot it transmits one packet with some probability. Another energy harvesting (EH) sensor node generates a new status update with a certain probability whenever it is charged. We derive the delay of the grid-connected node and the AoI of the EH sensor as functions of different parameters in the system. The results show that the mutual interference has a non-trivial impact on the delay and age performance of the two nodes.
Scheduling the transmission of time-sensitive information from a source node to multiple users over error-prone communication channels is studied with the goal of minimizing the long-term average age of information (AoI) at the users. A long-term ave rage resource constraint is imposed on the source, which limits the average number of transmissions. The source can transmit only to a single user at each time slot, and after each transmission, it receives an instantaneous ACK/NACK feedback from the intended receiver, and decides when and to which user to transmit the next update. Assuming the channel statistics are known, the optimal scheduling policy is studied for both the standard automatic repeat request (ARQ) and hybrid ARQ (HARQ) protocols. Then, a reinforcement learning(RL) approach is introduced to find a near-optimal policy, which does not assume any a priori information on the random processes governing the channel states. Different RL methods including average-cost SARSAwith linear function approximation (LFA), upper confidence reinforcement learning (UCRL2), and deep Q-network (DQN) are applied and compared through numerical simulations
In this paper, we consider multiuser multiple-input single-output (MISO) interference channel where the received signal is divided into two parts for information decoding and energy harvesting (EH), respectively. The transmit beamforming vectors and receive power splitting (PS) ratios are jointly designed in order to minimize the total transmission power subject to both signal-to-interference-plus-noise ratio (SINR) and EH constraints. Most joint beamforming and power splitting (JBPS) designs assume that perfect channel state information (CSI) is available; however CSI errors are inevitable in practice. To overcome this limitation, we study the robust JBPS design problem assuming a norm-bounded error (NBE) model for the CSI. Three different solution approaches are proposed for the robust JBPS problem, each one leading to a different computational algorithm. Firstly, an efficient semidefinite relaxation (SDR)-based approach is presented to solve the highly non-convex JBPS problem, where the latter can be formulated as a semidefinite programming (SDP) problem. A rank-one recovery method is provided to recover a robust feasible solution to the original problem. Secondly, based on second order cone programming (SOCP) relaxation, we propose a low complexity approach with the aid of a closed-form robust solution recovery method. Thirdly, a new iterative method is also provided which can achieve near-optimal performance when the SDR-based algorithm results in a higher-rank solution. We prove that this iterative algorithm monotonically converges to a Karush-Kuhn-Tucker (KKT) solution of the robust JBPS problem. Finally, simulation results are presented to validate the robustness and efficiency of the proposed algorithms.
110 - Zhiyuan Jiang 2020
In a heterogeneous unreliable multiaccess network, wherein terminals share a common wireless channel with distinctive error probabilities, existing works have showed that a persistent round-robin (RR-P) scheduling policy (i.e., greedy policy) can be arbitrarily worse than the optimum in terms of Age of Information (AoI) under standard Automatic Repeat reQuest (ARQ), and one must resort to Whittles index approach for optimal AoI. In this paper, practical Hybrid ARQ (HARQ) schemes which are widely-used in todays wireless networks are considered. We show that RR-P is very close to optimum with asymptotically many terminals in this case, by explicitly deriving tight, closed-form AoI gaps between optimum and achievable AoI by RR-P. In particular, it is rigorously proved that for RR-P, under HARQ models concerning fading channels (resp. finite-blocklength regime), the relative AoI gap compared with the optimum is within a constant of $(sqrt{e}-1)^2/4sqrt{e} cong 6.4%$ (resp. $6.2%$ with error exponential decay rate of $0.5$). In addition, RR-P enjoys the distinct advantage of implementation simplicity with channel-unaware and easy-to-decentralize operations, making it favorable in practice.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا