ترغب بنشر مسار تعليمي؟ اضغط هنا

CityNet: A Multi-city Multi-modal Dataset for Smart City Applications

117   0   0.0 ( 0 )
 نشر من قبل Xu Geng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data-driven approaches have been applied to many problems in urban computing. However, in the research community, such approaches are commonly studied under data from limited sources, and are thus unable to characterize the complexity of urban data coming from multiple entities and the correlations among them. Consequently, an inclusive and multifaceted dataset is necessary to facilitate more extensive studies on urban computing. In this paper, we present CityNet, a multi-modal urban dataset containing data from 7 cities, each of which coming from 3 data sources. We first present the generation process of CityNet as well as its basic properties. In addition, to facilitate the use of CityNet, we carry out extensive machine learning experiments, including spatio-temporal predictions, transfer learning, and reinforcement learning. The experimental results not only provide benchmarks for a wide range of tasks and methods, but also uncover internal correlations among cities and tasks within CityNet that, with adequate leverage, can improve performances on various tasks. With the benchmarking results and the correlations uncovered, we believe that CityNet can contribute to the field of urban computing by supporting research on many advanced topics.

قيم البحث

اقرأ أيضاً

The advancement of various research sectors such as Internet of Things (IoT), Machine Learning, Data Mining, Big Data, and Communication Technology has shed some light in transforming an urban city integrating the aforementioned techniques to a commo nly known term - Smart City. With the emergence of smart city, plethora of data sources have been made available for wide variety of applications. The common technique for handling multiple data sources is data fusion, where it improves data output quality or extracts knowledge from the raw data. In order to cater evergrowing highly complicated applications, studies in smart city have to utilize data from various sources and evaluate their performance based on multiple aspects. To this end, we introduce a multi-perspectives classification of the data fusion to evaluate the smart city applications. Moreover, we applied the proposed multi-perspectives classification to evaluate selected applications in each domain of the smart city. We conclude the paper by discussing potential future direction and challenges of data fusion integration.
This document introduces the background and the usage of the Hyperspectral City Dataset and the benchmark. The documentation first starts with the background and motivation of the dataset. Follow it, we briefly describe the method of collecting the d ataset and the processing method from raw dataset to the final release dataset, specifically, the version 1.0. We also provide the detailed usage of the dataset and the evaluation metric for submitted the result for the 2019 Hyperspectral City Challenge.
Urban traffic optimization using traffic cameras as sensors is driving the need to advance state-of-the-art multi-target multi-camera (MTMC) tracking. This work introduces CityFlow, a city-scale traffic camera dataset consisting of more than 3 hours of synchronized HD videos from 40 cameras across 10 intersections, with the longest distance between two simultaneous cameras being 2.5 km. To the best of our knowledge, CityFlow is the largest-scale dataset in terms of spatial coverage and the number of cameras/videos in an urban environment. The dataset contains more than 200K annotated bounding boxes covering a wide range of scenes, viewing angles, vehicle models, and urban traffic flow conditions. Camera geometry and calibration information are provided to aid spatio-temporal analysis. In addition, a subset of the benchmark is made available for the task of image-based vehicle re-identification (ReID). We conducted an extensive experimental evaluation of baselines/state-of-the-art approaches in MTMC tracking, multi-target single-camera (MTSC) tracking, object detection, and image-based ReID on this dataset, analyzing the impact of different network architectures, loss functions, spatio-temporal models and their combinations on task effectiveness. An evaluation server is launched with the release of our benchmark at the 2019 AI City Challenge (https://www.aicitychallenge.org/) that allows researchers to compare the performance of their newest techniques. We expect this dataset to catalyze research in this field, propel the state-of-the-art forward, and lead to deployed traffic optimization(s) in the real world.
We present FLIC, a distributed software data caching framework for fogs that reduces network traffic and latency. FLICis targeted toward city-scale deployments of cooperative IoT devices in which each node gathers and shares data with surrounding dev ices. As machine learning and other data processing techniques that require large volumes of training data are ported to low-cost and low-power IoT systems, we expect that data analysis will be moved away from the cloud. Separation from the cloud will reduce reliance on power-hungry centralized cloud-based infrastructure. However, city-scale deployments of cooperative IoT devices often connect to the Internet with cellular service, in which service charges are proportional to network usage. IoT system architects must be clever in order to keep costs down in these scenarios. To reduce the network bandwidth required to operate city-scale deployments of cooperative IoT systems, FLIC implements a distributed cache on the IoT nodes in the fog. FLIC allows the IoT network to share its data without repetitively interacting with a simple cloud storage service reducing calls out to a backing store. Our results displayed a less than 2% miss rate on reads. Thus, allowing for only 5% of requests needing the backing store. We were also able to achieve more than 50% reduction in bytes transmitted per second.
Public space utilization is crucial for urban developers to understand how efficient a place is being occupied in order to improve existing or future infrastructures. In a smart cities approach, implementing public space monitoring with Internet-of-T hings (IoT) sensors appear to be a viable solution. However, choice of sensors often is a challenging problem and often linked with scalability, coverage, energy consumption, accuracy, and privacy. To get the most from low cost sensor with aforementioned design in mind, we proposed data processing modules for capturing public space utilization with Renewable Wireless Sensor Network (RWSN) platform using pyroelectric infrared (PIR) and analog sound sensor. We first proposed a calibration process to remove false alarm of PIR sensor due to the impact of weather and environment. We then demonstrate how the sounds sensor can be processed to provide various insight of a public space. Lastly, we fused both sensors and study a particular public space utilization based on one month data to unveil its usage.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا