ترغب بنشر مسار تعليمي؟ اضغط هنا

Looking Outside the Window: Wide-Context Transformer for the Semantic Segmentation of High-Resolution Remote Sensing Images

131   0   0.0 ( 0 )
 نشر من قبل Lei Ding
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Long-range context information is crucial for the semantic segmentation of High-Resolution (HR) Remote Sensing Images (RSIs). The image cropping operations, commonly used for training neural networks, limit the perception of long-range context information in large RSIs. To break this limitation, we propose a Wide-Context Network (WiCoNet) for the semantic segmentation of HR RSIs. In the WiCoNet, apart from a conventional feature extraction network that aggregates the local information, an extra context branch is designed to explicitly model the spatial information in a larger image area. The information between the two branches is communicated through a Context Transformer, which is a novel design derived from the Vision Transformer to model the long-range context correlations. Ablation studies and comparative experiments conducted on several benchmark datasets prove the effectiveness of the proposed method. In addition, we present a new Beijing Land-Use (BLU) dataset. This is a large-scale HR satellite dataset provided with high-quality and fine-grained reference labels, which can boost future studies in this field.



قيم البحث

اقرأ أيضاً

177 - Libo Wang , Rui Li , Chenxi Duan 2021
The fully-convolutional network (FCN) with an encoder-decoder architecture has been the standard paradigm for semantic segmentation. The encoder-decoder architecture utilizes an encoder to capture multi-level feature maps, which are incorporated into the final prediction by a decoder. As the context is crucial for precise segmentation, tremendous effort has been made to extract such information in an intelligent fashion, including employing dilated/atrous convolutions or inserting attention modules. However, these endeavours are all based on the FCN architecture with ResNet or other backbones, which cannot fully exploit the context from the theoretical concept. By contrast, we propose the Swin Transformer as the backbone to extract the context information and design a novel decoder of densely connected feature aggregation module (DCFAM) to restore the resolution and produce the segmentation map. The experimental results on two remotely sensed semantic segmentation datasets demonstrate the effectiveness of the proposed scheme.
104 - Haifeng Li , Kaijian Qiu , Li Chen 2019
High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing m ass HRRSIs. However, HRRSIs often exhibit large intraclass variance and small interclass variance due to the diversity and complexity of ground objects, thereby bringing great challenges to a semantic segmentation task. In this paper, we propose a new end-to-end semantic segmentation network, which integrates lightweight spatial and channel attention modules that can refine features adaptively. We compare our method with several classic methods on the ISPRS Vaihingen and Potsdam datasets. Experimental results show that our method can achieve better semantic segmentation results. The source codes are available at https://github.com/lehaifeng/SCAttNet.
The attention mechanism can refine the extracted feature maps and boost the classification performance of the deep network, which has become an essential technique in computer vision and natural language processing. However, the memory and computatio nal costs of the dot-product attention mechanism increase quadratically with the spatio-temporal size of the input. Such growth hinders the usage of attention mechanisms considerably in application scenarios with large-scale inputs. In this Letter, we propose a Linear Attention Mechanism (LAM) to address this issue, which is approximately equivalent to dot-product attention with computational efficiency. Such a design makes the incorporation between attention mechanisms and deep networks much more flexible and versatile. Based on the proposed LAM, we re-factor the skip connections in the raw U-Net and design a Multi-stage Attention ResU-Net (MAResU-Net) for semantic segmentation from fine-resolution remote sensing images. Experiments conducted on the Vaihingen dataset demonstrated the effectiveness and efficiency of our MAResU-Net. Open-source code is available at https://github.com/lironui/Multistage-Attention-ResU-Net.
Training Convolutional Neural Networks (CNNs) for very high resolution images requires a large quantity of high-quality pixel-level annotations, which is extremely labor- and time-consuming to produce. Moreover, professional photo interpreters might have to be involved for guaranteeing the correctness of annotations. To alleviate such a burden, we propose a framework for semantic segmentation of aerial images based on incomplete annotations, where annotators are asked to label a few pixels with easy-to-draw scribbles. To exploit these sparse scribbled annotations, we propose the FEature and Spatial relaTional regulArization (FESTA) method to complement the supervised task with an unsupervised learning signal that accounts for neighbourhood structures both in spatial and feature terms.
85 - Rui Li , Chenxi Duan 2021
Semantic segmentation of remotely sensed images plays a crucial role in precision agriculture, environmental protection, and economic assessment. In recent years, substantial fine-resolution remote sensing images are available for semantic segmentati on. However, due to the complicated information caused by the increased spatial resolution, state-of-the-art deep learning algorithms normally utilize complex network architectures for segmentation, which usually incurs high computational complexity. Specifically, the high-caliber performance of the convolutional neural network (CNN) heavily relies on fine-grained spatial details (fine resolution) and sufficient contextual information (large receptive fields), both of which trigger high computational costs. This crucially impedes their practicability and availability in real-world scenarios that require real-time processing. In this paper, we propose an Attentive Bilateral Contextual Network (ABCNet), a convolutional neural network (CNN) with double branches, with prominently lower computational consumptions compared to the cutting-edge algorithms, while maintaining a competitive accuracy. Code is available at https://github.com/lironui/ABCNet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا