ﻻ يوجد ملخص باللغة العربية
Semantic segmentation of remotely sensed images plays a crucial role in precision agriculture, environmental protection, and economic assessment. In recent years, substantial fine-resolution remote sensing images are available for semantic segmentation. However, due to the complicated information caused by the increased spatial resolution, state-of-the-art deep learning algorithms normally utilize complex network architectures for segmentation, which usually incurs high computational complexity. Specifically, the high-caliber performance of the convolutional neural network (CNN) heavily relies on fine-grained spatial details (fine resolution) and sufficient contextual information (large receptive fields), both of which trigger high computational costs. This crucially impedes their practicability and availability in real-world scenarios that require real-time processing. In this paper, we propose an Attentive Bilateral Contextual Network (ABCNet), a convolutional neural network (CNN) with double branches, with prominently lower computational consumptions compared to the cutting-edge algorithms, while maintaining a competitive accuracy. Code is available at https://github.com/lironui/ABCNet.
Semantic segmentation of remote sensing images plays an important role in a wide range of applications including land resource management, biosphere monitoring and urban planning. Although the accuracy of semantic segmentation in remote sensing image
The fully-convolutional network (FCN) with an encoder-decoder architecture has been the standard paradigm for semantic segmentation. The encoder-decoder architecture utilizes an encoder to capture multi-level feature maps, which are incorporated into
The attention mechanism can refine the extracted feature maps and boost the classification performance of the deep network, which has become an essential technique in computer vision and natural language processing. However, the memory and computatio
High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing m
In this paper, we focus on the challenging multicategory instance segmentation problem in remote sensing images (RSIs), which aims at predicting the categories of all instances and localizing them with pixel-level masks. Although many landmark framew