ﻻ يوجد ملخص باللغة العربية
We develop a probabilistic control algorithm, $texttt{GTLProCo}$, for swarms of agents with heterogeneous dynamics and objectives, subject to high-level task specifications. The resulting algorithm not only achieves decentralized control of the swarm but also significantly improves scalability over state-of-the-art existing algorithms. Specifically, we study a setting in which the agents move along the nodes of a graph, and the high-level task specifications for the swarm are expressed in a recently-proposed language called graph temporal logic (GTL). By constraining the distribution of the swarm over the nodes of the graph, GTL can specify a wide range of properties, including safety, progress, and response. $texttt{GTLProCo}$, agnostic to the number of agents comprising the swarm, controls the density distribution of the swarm in a decentralized and probabilistic manner. To this end, it synthesizes a time-varying Markov chain modeling the time evolution of the density distribution under the GTL constraints. We first identify a subset of GTL, namely reach-avoid specifications, for which we can reduce the synthesis of such a Markov chain to either linear or semi-definite programs. Then, in the general case, we formulate the synthesis of the Markov chain as a mixed-integer nonlinear program (MINLP). We exploit the structure of the problem to provide an efficient sequential mixed-integer linear programming scheme with trust regions to solve the MINLP. We empirically demonstrate that our sequential scheme is at least three orders of magnitude faster than off-the-shelf MINLP solvers and illustrate the effectiveness of $texttt{GTLProCo}$ in several swarm scenarios.
We propose a framework based on Recurrent Neural Networks (RNNs) to determine an optimal control strategy for a discrete-time system that is required to satisfy specifications given as Signal Temporal Logic (STL) formulae. RNNs can store information
The deployment of autonomous systems in uncertain and dynamic environments has raised fundamental questions. Addressing these is pivotal to build fully autonomous systems and requires a systematic integration of planning and control. We first propose
Motivated by the recent interest in cyber-physical and autonomous robotic systems, we study the problem of dynamically coupled multi-agent systems under a set of signal temporal logic tasks. In particular, the satisfaction of each of these signal tem
Urban Air Mobility (UAM), or the scenario where multiple manned and Unmanned Aerial Vehicles (UAVs) carry out various tasks over urban airspaces, is a transportation concept of the future that is gaining prominence. UAM missions with complex spatial,
We consider the problem of generating randomized control sequences for complex networked systems typically actuated by human agents. Our approach leverages a concept known as control improvisation, which is based on a combination of data-driven learn