ﻻ يوجد ملخص باللغة العربية
Motivated by the recent interest in cyber-physical and autonomous robotic systems, we study the problem of dynamically coupled multi-agent systems under a set of signal temporal logic tasks. In particular, the satisfaction of each of these signal temporal logic tasks depends on the behavior of a distinct set of agents. Instead of abstracting the agent dynamics and the temporal logic tasks into a discrete domain and solving the problem therein or using optimization-based methods, we derive collaborative feedback control laws. These control laws are based on a decentralized control barrier function condition that results in discontinuous control laws, as opposed to a centralized condition resembling the single-agent case. The benefits of our approach are inherent robustness properties typically present in feedback control as well as satisfaction guarantees for continuous-time multi-agent systems. More specifically, time-varying control barrier functions are used that account for the semantics of the signal temporal logic tasks at hand. For a certain fragment of signal temporal logic tasks, we further propose a systematic way to construct such control barrier functions. Finally, we show the efficacy and robustness of our framework in an experiment including a group of three omnidirectional robots.
We study the problem of controlling multi-agent systems under a set of signal temporal logic tasks. Signal temporal logic is a formalism that is used to express time and space constraints for dynamical systems. Recent methods to solve the control syn
The deployment of autonomous systems in uncertain and dynamic environments has raised fundamental questions. Addressing these is pivotal to build fully autonomous systems and requires a systematic integration of planning and control. We first propose
A framework for the event-triggered control synthesis under signal temporal logic (STL) tasks is proposed. In our previous work, a continuous-time feedback control law was designed, using the prescribed performance control technique, to satisfy STL t
Temporal logics provide a formalism for expressing complex system specifications. A large body of literature has addressed the verification and the control synthesis problem for deterministic systems under such specifications. For stochastic systems
Urban Air Mobility (UAM), or the scenario where multiple manned and Unmanned Aerial Vehicles (UAVs) carry out various tasks over urban airspaces, is a transportation concept of the future that is gaining prominence. UAM missions with complex spatial,