ﻻ يوجد ملخص باللغة العربية
We combine Newtons variational method with ideas from eigenvector continuation to construct a fast & accurate emulator for two-body scattering observables. The emulator will facilitate the application of rigorous statistical methods for interactions that depend smoothly on a set of free parameters. Our approach begins with a trial $K$ or $T$ matrix constructed from a small number of exact solutions to the Lippmann--Schwinger equation. Subsequent emulation only requires operations on small matrices. We provide several applications to short-range potentials with and without the Coulomb interaction and partial-wave coupling. It is shown that the emulator can accurately extrapolate far from the support of the training data. When used to emulate the neutron-proton cross section with a modern chiral interaction as a function of 26 free parameters, it reproduces the exact calculation with negligible error and provides an over 300x improvement in CPU time.
The meson-baryon molecular components for the $N^{ast}$ and $Delta ^{ast}$ resonances are investigated in terms of the compositeness, which is defined as the norm of the two-body wave function from the meson-baryon scattering amplitudes. The scatteri
We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated
We explore the constraints on the three-nucleon force (3NF) of chiral effective field theory ($chi$EFT) that are provided by bound-state observables in the $A=3$ and $A=4$ sectors. Our statistically rigorous analysis incorporates experimental error,
We present the 2-point function from Fast and Accurate Spherical Bessel Transformation (2-FAST) algorithm for a fast and accurate computation of integrals involving one or two spherical Bessel functions. These types of integrals occur when projecting
The standard approach to nuclear physics encodes phase shift information in an NN potential, then decodes that information in forming an effective interaction, appropriate to a low-momentum Hilbert space. Here we show that it is instead possible to c