ﻻ يوجد ملخص باللغة العربية
The standard approach to nuclear physics encodes phase shift information in an NN potential, then decodes that information in forming an effective interaction, appropriate to a low-momentum Hilbert space. Here we show that it is instead possible to construct the effective interaction directly from continuum phase shifts and mixing angles, eliminating all reference to a high momentum potential. The theory is rapidly convergent and well behaved, yielding sub-keV accuracy.
The traditional approach to nuclear physics encodes phase shift information in a nucleon-nucleon (NN) potential, producing a nucleon-level interaction that captures the sub-GeV consequences of QCD. A further reduction to the nuclear scale is needed t
An effective field theory is used to describe light nuclei, calculated from quantum chromodynamics on a lattice at unphysically large pion masses. The theory is calibrated at leading order to two available data sets on two- and three-body nuclei for
We present a systematic study of neutron-proton scattering in Nuclear Lattice Effective Field Theory (NLEFT), in terms of the computationally efficient radial Hamiltonian method. Our leading-order (LO) interaction consists of smeared, local contact t
We explore the lattice spacing dependence in Nuclear Lattice Effective Field Theory for few-body systems up to next-to-next-to leading order in chiral effective field theory including all isospin breaking and electromagnetic effects, the complete two
We investigate Nuclear Lattice Effective Field Theory for the two-body system for several lattice spacings at lowest order in the pionless as well as in the pionful theory. We discuss issues of regularizations and predictions for the effective range